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Abstract: The rapid advancements in artificial intelligence and computer vision have facilitated substantial 

progress in real-time object detection. Embedded systems, particularly Raspberry Pi and Nvidia Jetson Nano, 

present viable platforms for deploying these capabilities in cost-effective and resource-constrained environments. 

However, these devices are inherently challenged by constrained computational power and memory limitations. 

This study is dedicated to the design and optimization of lightweight object detection and recognition systems 

specifically tailored for embedded platforms. Leveraging the open-source frameworks OpenCV and TensorFlow 

Lite, we implement YOLOv4-tiny and MobileNet-SSD models. To enhance efficiency, advanced optimization 

techniques such as quantization and pruning are employed, ensuring real-time performance while maintaining 

high detection accuracy. The study comprehensively evaluates performance metrics, including detection accuracy, 

inference latency, and resource utilization, across practical applications such as surveillance and robotics. The 

results illustrate significant improvements in detection speed and reliability, thereby facilitating the development 

of scalable, energy-efficient embedded solutions. This research contributes to bridging the gap between state-of-

the-art object detection models and the computational constraints of embedded hardware, fostering the broader 

integration of AI-driven solutions in real-world applications. 

Keywords: Real-Time Object Detection, Embedded Systems, OpenCV, TensorFlow Lite, Raspberry Pi, Nvidia 

Jetson Nano, YOLOv4-tiny, MobileNet-SSD. 

1. Introduction  

The rapid evolution of artificial intelligence (AI) and computer vision has revolutionized real-time 

object detection, enabling a wide range of applications across various domains, including surveillance, 

autonomous vehicles, robotics, and industrial automation [1]. The integration of these advanced 

techniques into embedded systems presents a promising avenue for deploying intelligent vision-based 

solutions in resource-constrained environments [2]. Embedded platforms such as Raspberry Pi and 

Nvidia Jetson Nano offer a cost-effective means of implementing AI-driven object detection, but they 

also introduce challenges related to computational efficiency, memory constraints, and real-time 

performance [3,4]. 

To address these challenges, open-source computer vision frameworks such as OpenCV and 

TensorFlow Lite provide lightweight, optimized solutions for real-time inference on embedded 

hardware. These frameworks facilitate the deployment of state-of-the-art deep learning models, such as 

YOLOv4-tiny and MobileNet-SSD, which balance accuracy and efficiency for constrained environments 
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[5-7]. However, ensuring optimal performance on embedded devices requires advanced optimization 

techniques, including model quantization, pruning, and hardware-specific acceleration. 

A. Problem Statement 

Object detection models have significantly advanced AI applications, enabling real-time vision-

based decision-making across diverse domains. However, the direct deployment of these models on 

embedded systems presents a formidable challenge due to their limited computational power and 

memory constraints. Unlike high-performance computing platforms, embedded devices such as 

Raspberry Pi and Nvidia Jetson Nano struggle to process complex deep learning models efficiently. 

Without optimization, these limitations result in increased latency, reduced accuracy, and restricted 

applicability in real-world scenarios. Figure 1 illustrates the disparity between the computational 

demands of high-performance object detection models and the resource availability of embedded 

platforms. The substantial gap in memory usage and processing power underscores the necessity for 

strategic optimization to enable real-time inference without compromising detection accuracy. 

 

 
Figure 1. The disparity between the computational demands of high-performance object detection models and 

the resource availability of embedded platforms. 

 

In this sense, this research seeks to address a fundamental question: How can object detection models 

be adapted to achieve real-time performance on resource-constrained embedded systems while 

maintaining high accuracy? By investigating lightweight deep learning models and employing 

advanced optimization techniques such as quantization, pruning, and hardware acceleration, this study 

aims to bridge the computational gap. The findings will contribute to the development of efficient, 

scalable, and energy-aware embedded AI solutions, facilitating broader adoption in surveillance, 

robotics, and autonomous systems. 

B. Research Objectives 

The primary objective of this research is to design, implement, and optimize an efficient object 

detection and recognition system tailored for resource-constrained embedded platforms. To achieve 

this, the study focuses on the following specific objectives: 

▪ Implementation of Lightweight Object Detection Models: Deploying state-of-the-art 

lightweight object detection algorithms, such as YOLOv4-tiny and MobileNet-SSD, on 

embedded platforms including Raspberry Pi and Nvidia Jetson Nano. 

▪ Optimization for Embedded Environments: Enhancing computational efficiency through 

optimization techniques such as model quantization, pruning, and hardware-specific 

accelerations (e.g., TensorRT) to achieve real-time inference. 

▪ Performance Evaluation: Conducting a comprehensive performance assessment based on key 

metrics, including detection accuracy, inference speed (frames per second, FPS), CPU/GPU 

utilization, and memory consumption, to quantify the trade-offs between efficiency and 

accuracy. 
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▪ Validation in Real-World Applications: Testing and analyzing the optimized models in 

practical scenarios, such as surveillance and autonomous robotics, to evaluate their 

effectiveness, scalability, and applicability in real-time embedded AI solutions. 

By addressing these objectives, this research contributes to the development of cost-effective, energy-

efficient AI-driven embedded vision systems, facilitating broader adoption across various domains 

requiring real-time object detection. 

C. Importance and Scope of the Study 

The significance of this study lies in its potential to democratize AI-driven object detection by 

enabling its deployment in resource-constrained environments. As real-time vision-based systems 

continue to revolutionize fields such as robotics, smart homes, and industrial automation, there is a 

critical need for cost-effective, energy-efficient, and scalable solutions. Embedded systems, such as 

Raspberry Pi and Nvidia Jetson Nano, offer a promising alternative to high-performance computing 

platforms; however, their constrained computational resources present a substantial barrier to 

deploying state-of-the-art deep learning models. This research addresses this challenge by optimizing 

object detection frameworks to operate effectively on embedded platforms without compromising 

accuracy or real-time performance. 

One of the practical implications of this study is its potential application in low-cost surveillance and 

security systems. For example, an optimized object detection system running on a Raspberry Pi can 

serve as an affordable security solution for rural or remote areas, where traditional surveillance 

infrastructure may be prohibitively expensive. Similarly, autonomous robotic systems can benefit from 

lightweight AI models that enhance real-time decision-making while minimizing energy consumption. 

The scope of this research encompasses the implementation and optimization of lightweight object 

detection models, specifically YOLOv4-tiny and MobileNet-SSD, within open-source frameworks such 

as OpenCV and TensorFlow Lite. It explores key optimization techniques, including quantization, 

pruning, and TensorRT acceleration, to enhance model efficiency. The study is confined to evaluating 

the performance of these models on embedded platforms, focusing on metrics such as inference speed, 

accuracy, and resource utilization. By addressing these aspects, this research aims to bridge the gap 

between high-performance AI models and the computational limitations of embedded hardware, 

ultimately fostering the broader adoption of AI-driven vision systems in real-world applications. 

D. Literature Review 

According to Lei [8], existing methods for recognizing joints and fissures on tunnel faces suffer from 

challenges such as low recognition accuracy, limited robustness, and inefficient detection. To address 

these limitations, this study introduces an advanced deep learning-based segmentation algorithm, the 

Mask Region-based Convolutional Neural Network (Mask R-CNN), enhanced by a Transformer 

attention mechanism and a deformable convolutional network (Mask R-CNN-TD). Experimental 

evaluations demonstrate that Mask R-CNN-TD outperforms traditional Mask R-CNN variants and 

other instance segmentation techniques in terms of detection accuracy. Specifically, it achieves mean 

average precision (mAP) scores of 70.5%, 70.8%, 53.2%, and 63.3% for detection box and mask 

segmentation at thresholds of 0.5 and 0.75, respectively. Leveraging the stability and efficiency of the 

Mask R-CNN-TD model, this research further developed a mobile application, Tunnel Face Detector, 

designed for automated real-time tunnel face detection on construction sites. 

Shukhratov [9] proposes an Internet of Video Things (IoVT) solution that leverages deep learning 

algorithms for image recognition of plastic waste on a moving conveyor belt, integrating embedded 

intelligence for real-time processing. The study employs state-of-the-art object detection models, 

including Faster R-CNN, RetinaNet, and YOLOv8, to identify and classify plastic waste. The primary 

target categories for classification are Polyethylene Terephthalate (PET) and Polypropylene (PP), two of 

the most commonly used plastic materials. To enhance computational efficiency and enable real-time 

processing, the study implements quantization techniques on trained models, optimizing them for 

deployment on a commercial off-the-shelf embedded system. Experimental results demonstrate a high 

mean Average Precision (mAP) of 77.74% and an accuracy of 95.67% on the test dataset. Additionally, 
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the fine-tuned and optimized model achieves real-time performance when deployed on a Nvidia Jetson 

Nano embedded system, processing at 20 frames per second (FPS), making it a viable solution for real-

world waste sorting applications. 

Hu et al. [10] propose an embedded traffic sign detection system, YOLOv5-MCBS, which is based on 

an enhanced YOLOv5 algorithm. This system addresses the limitations of traditional object detection 

methods, which often suffer from high computational complexity and low detection accuracy, 

impacting their effectiveness in real-time traffic sign detection. The proposed approach aims to improve 

both detection accuracy and real-time performance while maintaining a lightweight model suitable for 

deployment on embedded systems. To achieve this, the study introduces two key modifications. First, 

to reduce computational load and model size, the original YOLOv5 backbone network is replaced with 

a more efficient MobileNetV3 architecture. Second, a convolutional block attention module (CBAM) is 

integrated into the neck network, enhancing feature fusion and refining the model’s ability to focus on 

critical regions. These optimizations collectively enhance detection accuracy while ensuring the model 

remains computationally feasible for real-time embedded deployment. 

In [11], face recognition has emerged as the dominant biometric recognition technology for identity 

verification, driven by significant advancements in deep learning. This study proposes a lightweight 

face detection and recognition method optimized for mobile devices with limited computational 

resources, utilizing an improved MobileFaceNet framework. The proposed approach consists of several 

key enhancements. Initially, the network structure is refined to improve face detection efficiency by 

incorporating median filtering and a minimal bounding box constraint strategy, leveraging the 

Multitask Convolutional Neural Network (MTCNN). To address multi-pose variations in real-world 

face detection scenarios, the method employs Affine Transformation for facial angle rotation and center 

point adjustment, ensuring precise pose correction in facial images. Figure 2 illustrates the grid-based 

detection framework utilized by YOLO, in which the input image is partitioned into grids, with each 

grid responsible for predicting bounding boxes and object classes. Over successive iterations, YOLO 

models have demonstrated significant performance improvements, with ULOV3 and ULOV4 

specifically addressing challenges such as detecting small objects and managing complex scenes [12]. 

 

 
Figure 2.  YOLO grid-based object detection framework, predicting bounding boxes and object classes for each 

grid cell. 

2. System Design and Methodology 

Embedded systems have become integral to modern AI applications, especially in resource-

constrained environments. Among the various options available, Raspberry Pi and Nvidia Jetson Nano 

stand out as popular choices due to their affordability, versatility, and robust support for AI-based 

workloads. 

A. Raspberry Pi 4 

The Raspberry Pi 4 is a low-cost, credit-card-sized computer that has gained immense popularity for 

prototyping and deploying real-world AI applications. Equipped with a quad-core ARM Cortex-A72 

processor, up to 8GB of RAM, and an extensive range of compatible peripherals, it offers the perfect 

platform for exploring lightweight AI solutions [13]. Despite its limited computational power compared 
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to high-end devices, the Raspberry Pi 4 supports hardware acceleration for deep learning tasks through 

libraries like OpenCV and TensorFlow Lite. This makes it ideal for applications such as smart home 

monitoring and entry-level robotics. 

B. Nvidia Jetson Nano 

In contrast real-time object detection and deep learning inference. The platform also supports advanced 

AI libraries such as TensorRT, PyTorch, and TensorFlow, enabling seamless optimization for real-world 

deployments. Furthermore, its ability to run accelerated inference with optimized models like YOLOv4-

tiny has been demonstrated in several studies, showcasing its versatility in handling diverse 

applications [14,15]. Figure 3 presets Jetson Nano’s architecture, highlighting its advanced features and 

connectivity options, which make it a powerful platform for AI workloads. from “Nvidia Developer: 

Jetson Nano Brings AI Computing to Everyone”. 

 
Figure 3. Jetson Nano’s architecture, highlighting its advanced features and connectivity options, which make it a 

powerful platform for AI workloads.  

 

The selection of these platforms was guided by their balance of cost, performance, and compatibility 

with AI tools. While the Raspberry Pi 4 offers affordability and accessibility, the Jetson Nano excels in 

GPU-accelerated performance, making the two platforms complementary for the research objectives. 

This combination ensures that the proposed object detection system is scalable and adaptable to 

different use cases, from budget-constrained setups to more advanced deployments. 

C. Dataset Selection and Preprocessing 

The dataset is a cornerstone of any object detection system, dictating the quality and reliability of the 

final model. For this research, the COCO (Common Objects in Context) dataset was selected as the 

primary training and evaluation dataset. This choice was driven by its reputation as one of the most 

comprehensive datasets in the field of computer vision, offering over 330,000 images annotated with 

exceptional detail across 80 object categories. COCO excels in representing real-world complexities, 

such as varying lighting, occlusion, and diverse object densities. These qualities make it particularly 

well-suited for benchmarking lightweight models like YOLOv4-tiny and MobileNet-SSD [16]. 

D. Custom Dataset 

In addition to the COCO dataset, a custom dataset was developed to explore the application of object 

detection models in specific scenarios, such as surveillance and robotics. This custom dataset consisted 

of images collected from publicly available sources [17]. These images were annotated manually using 

LabelImg, an open-source tool that simplifies bounding box annotation. The custom dataset included 

objects such as people in various postures and densities, vehicles in outdoor environments, and small 

or low-contrast objects to test the sensitivity of detection systems. 

E. Preprocessing Steps 

Preprocessing these datasets was crucial to ensure compatibility with the selected models while 

enhancing model performance and robustness. The images were resized to a uniform resolution of 

416x416 pixels, matching the input dimensions required by YOLOv4-tiny and MobileNet-SSD. 
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Normalization was applied to scale pixel values to the range [0,1], which improves consistency across 

the dataset and facilitates faster model convergence [18]. 

To sum up, the dataset was divided into three subsets: training (80%), validation (10%), and testing 

(10%). This division ensured that the model could be trained effectively while its performance was 

monitored on unseen data. The datasets were formatted using the YOLO annotation scheme, which 

encodes each object’s class index, center coordinates, and dimensions in a compact representation. This 

format is not only space-efficient but also directly compatible with YOLO-based frameworks. Given the 

computational constraints of local embedded platforms, the training and evaluation processes were 

conducted using Google Colab and Kaggle Notebooks. These cloud platforms provided the necessary 

GPU acceleration and resources, enabling the research to proceed without interruptions. 

3. Object Detection Models (YOLOv4-tiny, MobileNet-SSD) 

The choice of object detection models plays a crucial role in the success of this research, especially in 

the context of embedded systems with limited computational resources. Among the various models 

available, YOLOv4-tiny and MobileNet-SSD were selected for their lightweight architectures and 

suitability for real-time applications [19]. 

A. YOLOv4-tiny 

YOLOv4-tiny is a compact version of the YOLOv4 model which is specifically designed for 

applications where speed and efficiency are paramount. Unlike its larger counterpart, YOLOv4-tiny 

reduces the number of parameters and layers, allowing it to run effectively on devices such as the 

Raspberry Pi and Nvidia Jetson Nano. Despite these reductions YOLOv4-tiny maintains a high level of 

accuracy especially for medium to large-sized objects which makes it ideal for tasks such as surveillance 

and robotics [20]. The backbone of this model, CSPDarknet53-tiny, ensures efficient feature extraction 

while minimizing computational overhead. Furthermore, its compatibility with optimization tools such 

as TensorRT enables faster inference on Nvidia platforms, making it a robust choice for resource-

constrained environments. 

B. MobileNet-SSD 

MobileNet-SSD integrates the efficient MobileNet architecture with the Single Shot Detector (SSD) 

framework. This combination allows it to excel in detecting smaller objects while maintaining real-time 

performance. The use of depthwise separable convolutions in MobileNet significantly reduces the 

computational complexity without sacrificing accuracy. Unlike YOLOv4-tiny, MobileNet-SSD's design 

emphasizes flexibility, allowing it to adapt to a wide range of applications through fine-tuning on 

domain-specific datasets [21]. Its compact design and high-speed detection capabilities make it 

particularly suitable for tasks such as smart home monitoring and lightweight drone applications. 

C. Training Workflow 

The training process began on Google Colab, where its free GPU access provided an excellent 

platform to fine-tune pre-trained models like YOLOv4-tiny and MobileNet-SSD [22]. The COCO dataset 

with its diverse and annotated images, was the backbone of this effort. Each model underwent a series 

of training epochs, during which the loss curves were continuously monitored in TensorBoard. The 

objective was to ensure consistent reduction in loss while avoiding overfitting. 

Hyperparameters like learning rate and batch size were adjusted dynamically. For instance, a smaller 

batch size was used initially on Colab due to memory constraints, but this was compensated for with 

gradient accumulation over multiple steps. The Kaggle platform was particularly useful for its larger 

GPU memory, allowing experimentation with larger batches during later stages of training. 

Augmentation techniques such as random rotation, horizontal flipping, and brightness adjustments 

enriched the dataset, making the models robust against real-world variations [23]. 
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Figure 1. Code Snippet for Loading Class Labels and Drawing Bounding Boxes in YOLOv4 Implementation on 

Kaggle. 

 

By the end of training, both YOLOv4-tiny and MobileNet-SSD achieved a detection accuracy of over 

85% on the validation set, as seen in the mAP (mean Average Precision) metrics. These metrics were 

plotted and analyzed to identify any inconsistencies in the learning process. 

4. Performance Evaluation Metrics 

Evaluating performance metrics like accuracy, inference time (FPS), CPU/GPU utilization, and 

memory usage is essential for understanding the efficiency of object detection models on embedded 

systems. These metrics offer valuable insights into how well models like YOLOv4-tiny and MobileNet-

SSD operate in practical, resource-constrained environments, showcasing their strengths and areas for 

improvement. Figure 2 illustrates comparing the accuracy (mAP), inference time (FPS), CPU/GPU 

utilization, and memory usage for YOLOv4-tiny and MobileNet-SSD models post-optimization. 

A. Accuracy (mAP): YOLOv4-tiny achieved a mAP of 86.4% on the COCO dataset, while 

MobileNet-SSD achieved 84.1%. 

B. Inference Speed (FPS): On the Jetson Nano, the optimized YOLOv4-tiny achieved an average 

of 28 FPS, peaking at 30 FPS in controlled environments. MobileNet-SSD demonstrated a 

faster average of 32 FPS, especially in scenarios with fewer objects to process. 

C. CPU/GPU Utilization: On the Jetson Nano, GPU utilization rates were 75-85% for YOLOv4-

tiny and 60-70% for MobileNet-SSD during inference. On the Raspberry Pi, CPU utilization 

often peaked at 90-95% during model inference, underscoring the strain on its limited 

processing capabilities. 

D. Memory Usage: Quantization effectively reduced the memory requirements of both models 

by approximately 50%. YOLOv4-tiny utilized 160 MB of memory, while MobileNet-SSD 

required only 120 MB. 

5. Optimization Techniques 

The efficiency of object detection models on embedded systems hinges on effective optimization 

techniques [24]. These techniques ensure that the models achieve real-time performance despite the 

computational and memory constraints inherent to platforms like the Raspberry Pi and Nvidia Jetson 

Nano. This section discusses quantization, pruning, and hardware acceleration, which were critical in 

optimizing YOLOv4-tiny and MobileNet-SSD. Figure 3 shows neural network quantization process, 

illustrating the conversion of floating-point weights to 8-bit integers. Adapted from "Neural Network 

Quantization: What Is It and How Does It Relate to TinyML?" by All About Circuits. 

A. Quantization 

Quantization was an integral step in reducing the memory footprint and computational complexity 

of the models. By converting the floating-point weights and activations to lower precision formats, 

specifically 8-bit integers, the overall model size and inference time were drastically reduced. This 
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transformation, facilitated by TensorFlow Lite's post-training quantization, aligned seamlessly with the 

hardware capabilities of embedded systems. 

 
Figure 4. Comparing the accuracy (mAP), inference time (FPS), CPU/GPU utilization, and memory usage for 

YOLOv4-tiny and MobileNet-SSD models post-optimization. 

 

 
Figure 5. Neural network quantization process, illustrating the conversion of floating-point weights to 8-bit 

integers.  

 

For instance, when YOLOv4-tiny was quantized for the Raspberry Pi, its size reduced by 

approximately 75%. Despite the substantial reduction, the detection accuracy remained nearly intact, a 

testament to the robustness of the quantization process. MobileNet-SSD also benefited significantly 

from this technique, as it enabled faster inference times while maintaining precision across a variety of 

test scenarios. 

B. Pruning 

Pruning was applied to eliminate redundant parameters in the neural network, thus simplifying the 

model without significantly affecting its performance. This was achieved by identifying and zeroing out 

weights below a specific threshold during training. TensorFlow's model optimization toolkit provided 
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a streamlined way to implement iterative pruning. Using TensorFlow’s model optimization toolkit, 

pruning reduced the size of MobileNet-SSD by approximately 40%, while maintaining over 95% of its 

original accuracy. The lightweight structure of the pruned model translated into faster computations, 

particularly on the Jetson Nano. YOLOv4-tiny similarly saw improvements in inference speed, as the 

pruning process trimmed the computational overhead associated with unnecessary layers. Figure 6 

presents visualization of the pruning process in neural networks. Weights below a defined threshold 

are zeroed out (shown in red), reducing computational complexity while retaining core functionality. 

From “A Comprehensive Guide to Neural Network Model Pruning”. 

 

 
Figure 7. Visualization of the pruning process in neural networks.  

6. Hardware Acceleration 

Hardware acceleration really helped boost the performance of object detection models on embedded 

systems. With the right optimization frameworks tailored to their architecture, devices like the Jetson 

Nano and Raspberry Pi showed significant improvements. Nvidia’s TensorRT and ARM Compute 

Library were key in this, providing tools that optimized how the models ran, making them work better 

on the hardware. On the Jetson Nano, TensorRT worked its magic by enabling layer fusion and 

precision calibration, which sped up the execution of YOLOv4-tiny. This led to a big improvement in 

inference time, letting the model process over 50 frames per second. Meanwhile, on the Raspberry Pi, 

MobileNet-SSD took advantage of ARM NEON acceleration, which optimized matrix operations and 

improved processing speed by about 20%. Plus, TensorFlow Lite’s GPU delegation was used to tap into 

the Raspberry Pi’s built-in GPU. This was super helpful for lighter models like MobileNet-SSD because 

it offloaded some of the heavy lifting to the GPU, making the overall frame rate much better. Table 1 

shows the performance of both models on the Raspberry Pi and Jetson Nano. 

 
Table 1. The performance of both models on the Raspberry Pi and Jetson Nano. 

Platform Model Optimizations Used Average FPS Inference Speed 

Raspberry Pi 4 MobileNet-SSD Quantization, ARM NEON 10-12 FPS Stable for real-

time video 

YOLOv4-tiny Quantization 8-10 FPS Slower than 

MobileNet-SSD 

- 

Jetson Nano MobileNet-SSD TensorRT, GPU 

acceleration 

32 FPS Smooth 

performance 

YOLOv4-tiny TensorRT, GPU 

acceleration 

28-30 FPS High FPS in real-time 

detection 

- 

 

Once everything was optimized, we deployed the models on both the Raspberry Pi 4 and Jetson 

Nano. Google Colab was the go-to platform for preparing the models for deployment, and then we used 

Python scripts and OpenCV to set them up to process live video feeds. The Raspberry Pi did a solid job 

with real-time video processing for object detection even with its limited processing power. After 

quantizing the MobileNet-SSD model, it managed to hit 10-12 FPS consistently, while YOLOv4-tiny was 

a bit slower, coming in at 8-10 FPS. These results show that even with limited hardware, lightweight 
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models can still be used for real-time tasks like surveillance or smart home applications. The Jetson 

Nano, on the other hand, really showed what it could do. With TensorRT optimizations, YOLOv4-tiny 

hit 28-30 FPS, while MobileNet-SSD reached 32 FPS in real-time detection tests as shown in Figure 8. 

The performance was much smoother, thanks to the GPU acceleration, which helped the system process 

frames even with heavier workloads. 

 

 
Figure 8. Object detection results from the YOLOv4 model, showing bounding boxes and confidence 

scores for identified objects in a test image. 
 

Results were evaluated in scenarios like detecting objects in cluttered environments and under 

varying lighting conditions. Both the Jetson Nano and Raspberry Pi platforms demonstrated real-time 

processing capabilities, though the Jetson Nano was better suited for high-performance tasks that 

required faster processing. 

7. Discussion 

The results from this study really highlight both the challenges and potential of deploying object 

detection models on embedded systems. YOLOv4-tiny performed really well in detecting objects in 

complex, fast-moving scenes, making it a solid choice for dynamic environments. On the other hand, 

MobileNet-SSD showed superior speed, especially when there were fewer objects to detect, which 

makes it great for situations where you need fast performance but not necessarily high object density. 

When it comes to real-time processing, the Jetson Nano really stood out, thanks to its GPU acceleration, 

achieving significantly higher frames per second (FPS) compared to the Raspberry Pi, which only relies 

on its CPU. That said, while the Jetson Nano provides excellent performance, the Raspberry Pi remains 

a top choice for low-cost, low-power applications. It's a fantastic option if you're working with a tight 

budget or don’t need the raw processing power that the Jetson Nano offers. 

These results have important implications for real-world applications, especially in areas like 

surveillance, robotics, and smart home technologies. The Jetson Nano would be ideal for high-

performance tasks, like tracking objects in crowded areas, where it’s crucial to have fast and reliable 

detection. The Raspberry Pi, on the other hand, would be a great fit for simpler tasks, where you’re 

looking for something cost-effective that can still deliver solid results. 

Of course, there are limitations to this study. While researchers did see significant improvements in 

performance, the accuracy of both models dropped a bit when tested on our custom dataset, especially 

when detecting smaller or low-contrast objects. This suggests that while the models can handle general 

object detection well, they might struggle with certain edge cases. Additionally, the study didn’t take 

into account some extreme environmental conditions, like poor lighting or rapid movement, which can 

definitely affect detection accuracy. These are important factors to consider when thinking about 
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deploying these models in the real world, where lighting can vary, and things don’t always stay still. 

Despite these limitations, the results demonstrate that object detection on embedded systems is not only 

possible but can be quite effective when optimized correctly. 

8. Practical Implementations in Surveillance and Robotics 

Real-time object detection models YOLOv4-tiny and MobileNet-SSD have shown great promise in 

real-world applications, particularly in surveillance and robotics. These models excel in environments 

where cost-effectiveness, low power consumption, and real-time decision-making are crucial. The 

ability of YOLOv4-tiny and MobileNet-SSD to detect objects in dynamic environments has transformed 

the field of surveillance. These models can monitor public spaces, industrial zones, or residential areas, 

identifying potential threats or anomalies in real-time. For example, an optimized YOLOv4-tiny model 

deployed on the Nvidia Jetson Nano can process live video feeds from security cameras, detecting 

objects like unauthorized personnel, unattended bags, or vehicles with suspicious patterns. The Jetson 

Nano’s GPU-accelerated performance ensures that the system can detect objects with high precision 

and speed. 

A. Case Study: Urban Surveillance 

In urban settings, where congestion and constant movement pose significant challenges, the Jetson 

Nano-powered YOLOv4-tiny model was able to handle multiple objects simultaneously. For instance, 

in a surveillance setup in a busy parking lot, the model detected vehicles, pedestrians, and even objects 

partially occluded by other vehicles or barriers. The optimized detection speed of 28-30 FPS allowed for 

real-time tracking, making the system highly effective for smart city applications. The integration of 

real-time object detection into robotics offers significant improvements in navigation, obstacle 

avoidance, and task automation. Drones and autonomous vehicles, equipped with YOLOv4-tiny and 

MobileNet-SSD, can navigate through dynamic environments, avoid obstacles, and interact with objects 

of interest. 

B. Case Study: Drone-based Wildlife Monitoring 

In conservation efforts, drones equipped with YOLOv4-tiny were deployed in a forest reserve for 

wildlife monitoring. The model efficiently detected animals, such as deer and endangered species, in 

real-time, even in challenging environments with dense foliage. The real-time processing capability 

ensured that the drone could navigate and make decisions autonomously while detecting and tracking 

wildlife across large areas as demonstrated in Figure 11. While the models demonstrated impressive 

results in controlled environments, their performance in real-world conditions revealed additional 

challenges that must be addressed for more robust deployment. Factors such as lighting conditions, 

object occlusion, and network instability can significantly affect the detection accuracy. 

A. Challenges Encountered 

During this research, a number of challenges emerged, particularly in the implementation and 

deployment of object detection systems on embedded platforms. One of the main challenges was 

balancing performance with hardware limitations of devices such as the Raspberry Pi and Jetson Nano. 

Despite applying optimization techniques such as quantization and sorting, the Raspberry Pi struggled 

to maintain real-time performance, especially when handling high-resolution input or processing 

multiple items in a random environment. In scenarios with high object density, the system occasionally 

experiences frame drops, affecting the overall detection accuracy and speed. 

Additionally, the Jetson Nano, performing better than the Raspberry Pi, faced its own problems, 

especially with thermal trotting. The prolonged use of the device under heavy computational burden 

led to overheating, reducing its processing capabilities. To reduce this, an active cooling system was 

needed, which increased the complexity of deployment. Furthermore, quantization and harvesting, 

although effective in reducing the size of the model and increasing the speed of estimation, introduce a 

tradeoff especially when smaller or fewer opposing objects are detected. 
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Figure 9. Wildlife detection using a drone equipped with YOLOv4-tiny. The left image shows animal detection in 

a wetland environment, while the right image demonstrates detection in a dry, forested area. Bounding boxes 

with confidence scores highlight the detection. 

 

These challenges highlighted the delicate balance between model accuracy and optimization for 

embedded systems. Another important issue concerned the compatibility and integration of different 

software and hardware components. Different versions of libraries, such as Tensor Flowlight, Tensor 

RT, and Open CV, occasionally cause inconsistencies in versions, causing delays and requiring manual 

intervention. Network instability during real-time video processing, especially when using external IP 

cameras, also poses a challenge, as delays and connection drops disrupted data flow, affecting overall 

performance. These constraints provided valuable lessons in the need for robust hardware-software 

integration to ensure consistent and reliable operation in system design, optimization, and real-world 

deployments. 

9. Conclusions 

In this study, the researcher evaluated the feasibility of deploying real-time object detection models, 

ULOV4-small and mobile Net-SSD, on embedded platforms such as the Raspberry Pi and Nvidia Jetson 

Nano. Studies show that with appropriate optimization techniques, such as quantization, sorting, and 

hardware speed, it is possible to detect objects in real time on systems that limit these resources. The 

results showed that YOLOV4-Small performed best in detecting medium-to-large objects, while Mobile 

Net-SSD performed exceptionally well in real-time processing, especially in dynamic environments. 

The Jetson Nano overtook the Raspberry Pi with its GPU high-speed capabilities, achieving significantly 

higher FPS, making it more suitable for high-performance tasks.  

The Raspberry Pi, on the other hand, although limited by its CPU, still demonstrates feasibility for 

lightweight applications such as basic monitoring systems. Optimization techniques, especially 

quantization, were important in reducing model size and improving estimation speeds without 

compromising accuracy. However, challenges such as low accuracy in low light conditions, object 

inhibition, and the need for real-time processing under various environmental factors highlighted the 

limitations of existing models and systems. 

For future work, several directions can be explored to further enhance the performance and 

applicability of object detection systems on embedded platforms. First, expanding the datasets to 

include images taken under different environmental conditions, such as low light and random settings, 

will help improve model robustness. Adding additional sensors such as infrared or thermal cameras 

can also increase detection in difficult situations. More optimization techniques, such as knowledge 

dissimilarity and model ensemble methods, can potentially increase accuracy while maintaining real-

time performance. Additionally, the integration of Edge AI and multi-device collaboration offers a 

promising way to distribute computational load, increase system efficiency, and scalability. Finally, 
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addressing the power consumption and thermal management of embedded devices, especially in long-

term deployment, will be necessary to ensure reliability and efficiency in real-world applications. This 

development could expand the scope of embedded AI systems in a wide range of sectors, including 

smart cities, healthcare and industrial automation. 
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Appendices 

Code for Loading Yolo Model 

import cv2 

import os 

import numpy as np 

import matplotlib.pyplot as plt 
 

 #Paths to YOLO configuration and weights files 

config_path = '/kaggle/input/yolov4-object-detection/darknet/cfg/yolov4.cfg' 

weights_path = '/kaggle/input/yolov4-object-detection/darknet/yolov4.weights ' 

 

 #Load YOLO model 

net = cv2.dnn.readNetFromDarknet(config_path, weights_path) 
 

 #Set preferable backend and target 

net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) 

net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) 

print("YOLO model loaded successfully!") 
 

 #Load COCO classes 
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classes_path = '/kaggle/input/yolov4-object-detection/darknet/data/coco.names ' 

with open(classes_path, 'r') as f: 

    classes = [line.strip() for line in f.readlines()] 

print(f"Loaded {len(classes)} classes.") 
 

 #Get the output layers names once (this is required for forward pass) 

layer_names = net.getLayerNames)( 

output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] 
 

 #Directory containing COCO dataset images 

image_dir = '/kaggle/input/2017-2017/val2017/val2017 / '  

image_files = os.listdir(image_dir) 
 

 #Process each image in the dataset 

for image_file in image_files: 

    image_path = os.path.join(image_dir, image_file) 

    image = cv2.imread(image_path) 

    if image is None : 

        print(f"Error loading image: {image_file}") 

        continue 

 

     # Preprocess the image 

    blob = cv2.dnn.blobFromImage(image, scalefactor=1/255.0, size=(416, 416) , 

                                 swapRB=True, crop=False) 

    net.setInput(blob) 
 

     # Perform detection 

    outputs = net.forward(output_layers) 
 

     # Parse the detections 

    height, width = image.shape[:2] 

    boxes, confidences, class_ids   ][ ,][ ,][ =  

    for output in outputs : 

        for detection in output: 

            scores = detection[5:] 

            class_id = np.argmax(scores) 

            confidence = scores[class_id] 

            if confidence > 0.5:  # Confidence threshold 

                 box = detection[0:4] * np.array([width, height, width, height]) 

                centerX, centerY, w, h = box.astype("int") 

                x = int(centerX - (w / 2)) 

                 y = int(centerY - (h / 2)) 

                 boxes.append([x, y, int(w), int(h)]) 

                confidences.append(float(confidence)) 

                class_ids.append(class_id) 
 

     # Apply Non-Maximum Suppression 

    indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) 

    if len(indices) > 0: 

        filtered_boxes = [(boxes[i], confidences[i], class_ids[i]) for i in indices.flatten()] 

    else : 
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        filtered_boxes    ][ =  

 

      # Draw bounding boxes and labels on the image 

    for box, confidence, class_id in filtered_boxes : 

        x, y, w, h = box 

        label = f"{classes[class_id]}: {confidence:.2f} " 

        color = (0, 255, 0) 

        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2) 

        cv2.putText(image, label, (x, y - 10) , 

                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2 ) 

 

      # Display the image with detections 

    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) 

    plt.axis("off") 

    plt.title(image_file) 

    plt.show)( 
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