

IJEES

International Journal of Electrical Engineering

 and Sustainability (IJEES)

ISSN (online): 2959-9229

https://ijees.org/index.php/ijees/index

 ISI 2023-2024: (0.557) Arab Impact Factor: 1.51 SJIF 2024 = 5.274

Volume 3 | Number 1 | January-March 2025 | Pages 103-118

Page | 103

Article

Real-Time Object Detection and Recognition in

Embedded Systems Using Open-Source Computer

Vision Frameworks

Kareemah Abdulhaq1*, Abdussalam Ali Ahmed2

1 College of Electronic Technology - Bani Walid, Bani Walid, Libya
2Mechanical and Industrial Engineering Department, Bani Waleed University, Bani Waleed, Libya

*Corresponding author: karima139@gmail.com

Received: January 07, 2025 Accepted: February 28, 2025 Published: March 18, 2025

This is an open access article under the BY-CC license

Abstract: The rapid advancements in artificial intelligence and computer vision have facilitated substantial

progress in real-time object detection. Embedded systems, particularly Raspberry Pi and Nvidia Jetson Nano,

present viable platforms for deploying these capabilities in cost-effective and resource-constrained environments.

However, these devices are inherently challenged by constrained computational power and memory limitations.

This study is dedicated to the design and optimization of lightweight object detection and recognition systems

specifically tailored for embedded platforms. Leveraging the open-source frameworks OpenCV and TensorFlow

Lite, we implement YOLOv4-tiny and MobileNet-SSD models. To enhance efficiency, advanced optimization

techniques such as quantization and pruning are employed, ensuring real-time performance while maintaining

high detection accuracy. The study comprehensively evaluates performance metrics, including detection accuracy,

inference latency, and resource utilization, across practical applications such as surveillance and robotics. The

results illustrate significant improvements in detection speed and reliability, thereby facilitating the development

of scalable, energy-efficient embedded solutions. This research contributes to bridging the gap between state-of-

the-art object detection models and the computational constraints of embedded hardware, fostering the broader

integration of AI-driven solutions in real-world applications.

Keywords: Real-Time Object Detection, Embedded Systems, OpenCV, TensorFlow Lite, Raspberry Pi, Nvidia

Jetson Nano, YOLOv4-tiny, MobileNet-SSD.

1. Introduction

The rapid evolution of artificial intelligence (AI) and computer vision has revolutionized real-time

object detection, enabling a wide range of applications across various domains, including surveillance,

autonomous vehicles, robotics, and industrial automation [1]. The integration of these advanced

techniques into embedded systems presents a promising avenue for deploying intelligent vision-based

solutions in resource-constrained environments [2]. Embedded platforms such as Raspberry Pi and

Nvidia Jetson Nano offer a cost-effective means of implementing AI-driven object detection, but they

also introduce challenges related to computational efficiency, memory constraints, and real-time

performance [3,4].

To address these challenges, open-source computer vision frameworks such as OpenCV and

TensorFlow Lite provide lightweight, optimized solutions for real-time inference on embedded

hardware. These frameworks facilitate the deployment of state-of-the-art deep learning models, such as

YOLOv4-tiny and MobileNet-SSD, which balance accuracy and efficiency for constrained environments

Abdulhaq & Ahmed, 2025 IJEES

Page | 104

[5-7]. However, ensuring optimal performance on embedded devices requires advanced optimization

techniques, including model quantization, pruning, and hardware-specific acceleration.

A. Problem Statement

Object detection models have significantly advanced AI applications, enabling real-time vision-

based decision-making across diverse domains. However, the direct deployment of these models on

embedded systems presents a formidable challenge due to their limited computational power and

memory constraints. Unlike high-performance computing platforms, embedded devices such as

Raspberry Pi and Nvidia Jetson Nano struggle to process complex deep learning models efficiently.

Without optimization, these limitations result in increased latency, reduced accuracy, and restricted

applicability in real-world scenarios. Figure 1 illustrates the disparity between the computational

demands of high-performance object detection models and the resource availability of embedded

platforms. The substantial gap in memory usage and processing power underscores the necessity for

strategic optimization to enable real-time inference without compromising detection accuracy.

Figure 1. The disparity between the computational demands of high-performance object detection models and

the resource availability of embedded platforms.

In this sense, this research seeks to address a fundamental question: How can object detection models

be adapted to achieve real-time performance on resource-constrained embedded systems while

maintaining high accuracy? By investigating lightweight deep learning models and employing

advanced optimization techniques such as quantization, pruning, and hardware acceleration, this study

aims to bridge the computational gap. The findings will contribute to the development of efficient,

scalable, and energy-aware embedded AI solutions, facilitating broader adoption in surveillance,

robotics, and autonomous systems.

B. Research Objectives

The primary objective of this research is to design, implement, and optimize an efficient object

detection and recognition system tailored for resource-constrained embedded platforms. To achieve

this, the study focuses on the following specific objectives:

▪ Implementation of Lightweight Object Detection Models: Deploying state-of-the-art

lightweight object detection algorithms, such as YOLOv4-tiny and MobileNet-SSD, on

embedded platforms including Raspberry Pi and Nvidia Jetson Nano.

▪ Optimization for Embedded Environments: Enhancing computational efficiency through

optimization techniques such as model quantization, pruning, and hardware-specific

accelerations (e.g., TensorRT) to achieve real-time inference.

▪ Performance Evaluation: Conducting a comprehensive performance assessment based on key

metrics, including detection accuracy, inference speed (frames per second, FPS), CPU/GPU

utilization, and memory consumption, to quantify the trade-offs between efficiency and

accuracy.

Abdulhaq & Ahmed, 2025 IJEES

 Page | 105

▪ Validation in Real-World Applications: Testing and analyzing the optimized models in

practical scenarios, such as surveillance and autonomous robotics, to evaluate their

effectiveness, scalability, and applicability in real-time embedded AI solutions.

By addressing these objectives, this research contributes to the development of cost-effective, energy-

efficient AI-driven embedded vision systems, facilitating broader adoption across various domains

requiring real-time object detection.

C. Importance and Scope of the Study

The significance of this study lies in its potential to democratize AI-driven object detection by

enabling its deployment in resource-constrained environments. As real-time vision-based systems

continue to revolutionize fields such as robotics, smart homes, and industrial automation, there is a

critical need for cost-effective, energy-efficient, and scalable solutions. Embedded systems, such as

Raspberry Pi and Nvidia Jetson Nano, offer a promising alternative to high-performance computing

platforms; however, their constrained computational resources present a substantial barrier to

deploying state-of-the-art deep learning models. This research addresses this challenge by optimizing

object detection frameworks to operate effectively on embedded platforms without compromising

accuracy or real-time performance.

One of the practical implications of this study is its potential application in low-cost surveillance and

security systems. For example, an optimized object detection system running on a Raspberry Pi can

serve as an affordable security solution for rural or remote areas, where traditional surveillance

infrastructure may be prohibitively expensive. Similarly, autonomous robotic systems can benefit from

lightweight AI models that enhance real-time decision-making while minimizing energy consumption.

The scope of this research encompasses the implementation and optimization of lightweight object

detection models, specifically YOLOv4-tiny and MobileNet-SSD, within open-source frameworks such

as OpenCV and TensorFlow Lite. It explores key optimization techniques, including quantization,

pruning, and TensorRT acceleration, to enhance model efficiency. The study is confined to evaluating

the performance of these models on embedded platforms, focusing on metrics such as inference speed,

accuracy, and resource utilization. By addressing these aspects, this research aims to bridge the gap

between high-performance AI models and the computational limitations of embedded hardware,

ultimately fostering the broader adoption of AI-driven vision systems in real-world applications.

D. Literature Review

According to Lei [8], existing methods for recognizing joints and fissures on tunnel faces suffer from

challenges such as low recognition accuracy, limited robustness, and inefficient detection. To address

these limitations, this study introduces an advanced deep learning-based segmentation algorithm, the

Mask Region-based Convolutional Neural Network (Mask R-CNN), enhanced by a Transformer

attention mechanism and a deformable convolutional network (Mask R-CNN-TD). Experimental

evaluations demonstrate that Mask R-CNN-TD outperforms traditional Mask R-CNN variants and

other instance segmentation techniques in terms of detection accuracy. Specifically, it achieves mean

average precision (mAP) scores of 70.5%, 70.8%, 53.2%, and 63.3% for detection box and mask

segmentation at thresholds of 0.5 and 0.75, respectively. Leveraging the stability and efficiency of the

Mask R-CNN-TD model, this research further developed a mobile application, Tunnel Face Detector,

designed for automated real-time tunnel face detection on construction sites.

Shukhratov [9] proposes an Internet of Video Things (IoVT) solution that leverages deep learning

algorithms for image recognition of plastic waste on a moving conveyor belt, integrating embedded

intelligence for real-time processing. The study employs state-of-the-art object detection models,

including Faster R-CNN, RetinaNet, and YOLOv8, to identify and classify plastic waste. The primary

target categories for classification are Polyethylene Terephthalate (PET) and Polypropylene (PP), two of

the most commonly used plastic materials. To enhance computational efficiency and enable real-time

processing, the study implements quantization techniques on trained models, optimizing them for

deployment on a commercial off-the-shelf embedded system. Experimental results demonstrate a high

mean Average Precision (mAP) of 77.74% and an accuracy of 95.67% on the test dataset. Additionally,

Abdulhaq & Ahmed, 2025 IJEES

Page | 106

the fine-tuned and optimized model achieves real-time performance when deployed on a Nvidia Jetson

Nano embedded system, processing at 20 frames per second (FPS), making it a viable solution for real-

world waste sorting applications.

Hu et al. [10] propose an embedded traffic sign detection system, YOLOv5-MCBS, which is based on

an enhanced YOLOv5 algorithm. This system addresses the limitations of traditional object detection

methods, which often suffer from high computational complexity and low detection accuracy,

impacting their effectiveness in real-time traffic sign detection. The proposed approach aims to improve

both detection accuracy and real-time performance while maintaining a lightweight model suitable for

deployment on embedded systems. To achieve this, the study introduces two key modifications. First,

to reduce computational load and model size, the original YOLOv5 backbone network is replaced with

a more efficient MobileNetV3 architecture. Second, a convolutional block attention module (CBAM) is

integrated into the neck network, enhancing feature fusion and refining the model’s ability to focus on

critical regions. These optimizations collectively enhance detection accuracy while ensuring the model

remains computationally feasible for real-time embedded deployment.

In [11], face recognition has emerged as the dominant biometric recognition technology for identity

verification, driven by significant advancements in deep learning. This study proposes a lightweight

face detection and recognition method optimized for mobile devices with limited computational

resources, utilizing an improved MobileFaceNet framework. The proposed approach consists of several

key enhancements. Initially, the network structure is refined to improve face detection efficiency by

incorporating median filtering and a minimal bounding box constraint strategy, leveraging the

Multitask Convolutional Neural Network (MTCNN). To address multi-pose variations in real-world

face detection scenarios, the method employs Affine Transformation for facial angle rotation and center

point adjustment, ensuring precise pose correction in facial images. Figure 2 illustrates the grid-based

detection framework utilized by YOLO, in which the input image is partitioned into grids, with each

grid responsible for predicting bounding boxes and object classes. Over successive iterations, YOLO

models have demonstrated significant performance improvements, with ULOV3 and ULOV4

specifically addressing challenges such as detecting small objects and managing complex scenes [12].

Figure 2. YOLO grid-based object detection framework, predicting bounding boxes and object classes for each

grid cell.

2. System Design and Methodology

Embedded systems have become integral to modern AI applications, especially in resource-

constrained environments. Among the various options available, Raspberry Pi and Nvidia Jetson Nano

stand out as popular choices due to their affordability, versatility, and robust support for AI-based

workloads.

A. Raspberry Pi 4

The Raspberry Pi 4 is a low-cost, credit-card-sized computer that has gained immense popularity for

prototyping and deploying real-world AI applications. Equipped with a quad-core ARM Cortex-A72

processor, up to 8GB of RAM, and an extensive range of compatible peripherals, it offers the perfect

platform for exploring lightweight AI solutions [13]. Despite its limited computational power compared

Abdulhaq & Ahmed, 2025 IJEES

 Page | 107

to high-end devices, the Raspberry Pi 4 supports hardware acceleration for deep learning tasks through

libraries like OpenCV and TensorFlow Lite. This makes it ideal for applications such as smart home

monitoring and entry-level robotics.

B. Nvidia Jetson Nano

In contrast real-time object detection and deep learning inference. The platform also supports advanced

AI libraries such as TensorRT, PyTorch, and TensorFlow, enabling seamless optimization for real-world

deployments. Furthermore, its ability to run accelerated inference with optimized models like YOLOv4-

tiny has been demonstrated in several studies, showcasing its versatility in handling diverse

applications [14,15]. Figure 3 presets Jetson Nano’s architecture, highlighting its advanced features and

connectivity options, which make it a powerful platform for AI workloads. from “Nvidia Developer:

Jetson Nano Brings AI Computing to Everyone”.

Figure 3. Jetson Nano’s architecture, highlighting its advanced features and connectivity options, which make it a

powerful platform for AI workloads.

The selection of these platforms was guided by their balance of cost, performance, and compatibility

with AI tools. While the Raspberry Pi 4 offers affordability and accessibility, the Jetson Nano excels in

GPU-accelerated performance, making the two platforms complementary for the research objectives.

This combination ensures that the proposed object detection system is scalable and adaptable to

different use cases, from budget-constrained setups to more advanced deployments.

C. Dataset Selection and Preprocessing

The dataset is a cornerstone of any object detection system, dictating the quality and reliability of the

final model. For this research, the COCO (Common Objects in Context) dataset was selected as the

primary training and evaluation dataset. This choice was driven by its reputation as one of the most

comprehensive datasets in the field of computer vision, offering over 330,000 images annotated with

exceptional detail across 80 object categories. COCO excels in representing real-world complexities,

such as varying lighting, occlusion, and diverse object densities. These qualities make it particularly

well-suited for benchmarking lightweight models like YOLOv4-tiny and MobileNet-SSD [16].

D. Custom Dataset

In addition to the COCO dataset, a custom dataset was developed to explore the application of object

detection models in specific scenarios, such as surveillance and robotics. This custom dataset consisted

of images collected from publicly available sources [17]. These images were annotated manually using

LabelImg, an open-source tool that simplifies bounding box annotation. The custom dataset included

objects such as people in various postures and densities, vehicles in outdoor environments, and small

or low-contrast objects to test the sensitivity of detection systems.

E. Preprocessing Steps

Preprocessing these datasets was crucial to ensure compatibility with the selected models while

enhancing model performance and robustness. The images were resized to a uniform resolution of

416x416 pixels, matching the input dimensions required by YOLOv4-tiny and MobileNet-SSD.

Abdulhaq & Ahmed, 2025 IJEES

Page | 108

Normalization was applied to scale pixel values to the range [0,1], which improves consistency across

the dataset and facilitates faster model convergence [18].

To sum up, the dataset was divided into three subsets: training (80%), validation (10%), and testing

(10%). This division ensured that the model could be trained effectively while its performance was

monitored on unseen data. The datasets were formatted using the YOLO annotation scheme, which

encodes each object’s class index, center coordinates, and dimensions in a compact representation. This

format is not only space-efficient but also directly compatible with YOLO-based frameworks. Given the

computational constraints of local embedded platforms, the training and evaluation processes were

conducted using Google Colab and Kaggle Notebooks. These cloud platforms provided the necessary

GPU acceleration and resources, enabling the research to proceed without interruptions.

3. Object Detection Models (YOLOv4-tiny, MobileNet-SSD)

The choice of object detection models plays a crucial role in the success of this research, especially in

the context of embedded systems with limited computational resources. Among the various models

available, YOLOv4-tiny and MobileNet-SSD were selected for their lightweight architectures and

suitability for real-time applications [19].

A. YOLOv4-tiny

YOLOv4-tiny is a compact version of the YOLOv4 model which is specifically designed for

applications where speed and efficiency are paramount. Unlike its larger counterpart, YOLOv4-tiny

reduces the number of parameters and layers, allowing it to run effectively on devices such as the

Raspberry Pi and Nvidia Jetson Nano. Despite these reductions YOLOv4-tiny maintains a high level of

accuracy especially for medium to large-sized objects which makes it ideal for tasks such as surveillance

and robotics [20]. The backbone of this model, CSPDarknet53-tiny, ensures efficient feature extraction

while minimizing computational overhead. Furthermore, its compatibility with optimization tools such

as TensorRT enables faster inference on Nvidia platforms, making it a robust choice for resource-

constrained environments.

B. MobileNet-SSD

MobileNet-SSD integrates the efficient MobileNet architecture with the Single Shot Detector (SSD)

framework. This combination allows it to excel in detecting smaller objects while maintaining real-time

performance. The use of depthwise separable convolutions in MobileNet significantly reduces the

computational complexity without sacrificing accuracy. Unlike YOLOv4-tiny, MobileNet-SSD's design

emphasizes flexibility, allowing it to adapt to a wide range of applications through fine-tuning on

domain-specific datasets [21]. Its compact design and high-speed detection capabilities make it

particularly suitable for tasks such as smart home monitoring and lightweight drone applications.

C. Training Workflow

The training process began on Google Colab, where its free GPU access provided an excellent

platform to fine-tune pre-trained models like YOLOv4-tiny and MobileNet-SSD [22]. The COCO dataset

with its diverse and annotated images, was the backbone of this effort. Each model underwent a series

of training epochs, during which the loss curves were continuously monitored in TensorBoard. The

objective was to ensure consistent reduction in loss while avoiding overfitting.

Hyperparameters like learning rate and batch size were adjusted dynamically. For instance, a smaller

batch size was used initially on Colab due to memory constraints, but this was compensated for with

gradient accumulation over multiple steps. The Kaggle platform was particularly useful for its larger

GPU memory, allowing experimentation with larger batches during later stages of training.

Augmentation techniques such as random rotation, horizontal flipping, and brightness adjustments

enriched the dataset, making the models robust against real-world variations [23].

Abdulhaq & Ahmed, 2025 IJEES

 Page | 109

Figure 1. Code Snippet for Loading Class Labels and Drawing Bounding Boxes in YOLOv4 Implementation on

Kaggle.

By the end of training, both YOLOv4-tiny and MobileNet-SSD achieved a detection accuracy of over

85% on the validation set, as seen in the mAP (mean Average Precision) metrics. These metrics were

plotted and analyzed to identify any inconsistencies in the learning process.

4. Performance Evaluation Metrics

Evaluating performance metrics like accuracy, inference time (FPS), CPU/GPU utilization, and

memory usage is essential for understanding the efficiency of object detection models on embedded

systems. These metrics offer valuable insights into how well models like YOLOv4-tiny and MobileNet-

SSD operate in practical, resource-constrained environments, showcasing their strengths and areas for

improvement. Figure 2 illustrates comparing the accuracy (mAP), inference time (FPS), CPU/GPU

utilization, and memory usage for YOLOv4-tiny and MobileNet-SSD models post-optimization.

A. Accuracy (mAP): YOLOv4-tiny achieved a mAP of 86.4% on the COCO dataset, while

MobileNet-SSD achieved 84.1%.

B. Inference Speed (FPS): On the Jetson Nano, the optimized YOLOv4-tiny achieved an average

of 28 FPS, peaking at 30 FPS in controlled environments. MobileNet-SSD demonstrated a

faster average of 32 FPS, especially in scenarios with fewer objects to process.

C. CPU/GPU Utilization: On the Jetson Nano, GPU utilization rates were 75-85% for YOLOv4-

tiny and 60-70% for MobileNet-SSD during inference. On the Raspberry Pi, CPU utilization

often peaked at 90-95% during model inference, underscoring the strain on its limited

processing capabilities.

D. Memory Usage: Quantization effectively reduced the memory requirements of both models

by approximately 50%. YOLOv4-tiny utilized 160 MB of memory, while MobileNet-SSD

required only 120 MB.

5. Optimization Techniques

The efficiency of object detection models on embedded systems hinges on effective optimization

techniques [24]. These techniques ensure that the models achieve real-time performance despite the

computational and memory constraints inherent to platforms like the Raspberry Pi and Nvidia Jetson

Nano. This section discusses quantization, pruning, and hardware acceleration, which were critical in

optimizing YOLOv4-tiny and MobileNet-SSD. Figure 3 shows neural network quantization process,

illustrating the conversion of floating-point weights to 8-bit integers. Adapted from "Neural Network

Quantization: What Is It and How Does It Relate to TinyML?" by All About Circuits.

A. Quantization

Quantization was an integral step in reducing the memory footprint and computational complexity

of the models. By converting the floating-point weights and activations to lower precision formats,

specifically 8-bit integers, the overall model size and inference time were drastically reduced. This

Abdulhaq & Ahmed, 2025 IJEES

Page | 110

transformation, facilitated by TensorFlow Lite's post-training quantization, aligned seamlessly with the

hardware capabilities of embedded systems.

Figure 4. Comparing the accuracy (mAP), inference time (FPS), CPU/GPU utilization, and memory usage for

YOLOv4-tiny and MobileNet-SSD models post-optimization.

Figure 5. Neural network quantization process, illustrating the conversion of floating-point weights to 8-bit

integers.

For instance, when YOLOv4-tiny was quantized for the Raspberry Pi, its size reduced by

approximately 75%. Despite the substantial reduction, the detection accuracy remained nearly intact, a

testament to the robustness of the quantization process. MobileNet-SSD also benefited significantly

from this technique, as it enabled faster inference times while maintaining precision across a variety of

test scenarios.

B. Pruning

Pruning was applied to eliminate redundant parameters in the neural network, thus simplifying the

model without significantly affecting its performance. This was achieved by identifying and zeroing out

weights below a specific threshold during training. TensorFlow's model optimization toolkit provided

Abdulhaq & Ahmed, 2025 IJEES

 Page | 111

a streamlined way to implement iterative pruning. Using TensorFlow’s model optimization toolkit,

pruning reduced the size of MobileNet-SSD by approximately 40%, while maintaining over 95% of its

original accuracy. The lightweight structure of the pruned model translated into faster computations,

particularly on the Jetson Nano. YOLOv4-tiny similarly saw improvements in inference speed, as the

pruning process trimmed the computational overhead associated with unnecessary layers. Figure 6

presents visualization of the pruning process in neural networks. Weights below a defined threshold

are zeroed out (shown in red), reducing computational complexity while retaining core functionality.

From “A Comprehensive Guide to Neural Network Model Pruning”.

Figure 7. Visualization of the pruning process in neural networks.

6. Hardware Acceleration

Hardware acceleration really helped boost the performance of object detection models on embedded

systems. With the right optimization frameworks tailored to their architecture, devices like the Jetson

Nano and Raspberry Pi showed significant improvements. Nvidia’s TensorRT and ARM Compute

Library were key in this, providing tools that optimized how the models ran, making them work better

on the hardware. On the Jetson Nano, TensorRT worked its magic by enabling layer fusion and

precision calibration, which sped up the execution of YOLOv4-tiny. This led to a big improvement in

inference time, letting the model process over 50 frames per second. Meanwhile, on the Raspberry Pi,

MobileNet-SSD took advantage of ARM NEON acceleration, which optimized matrix operations and

improved processing speed by about 20%. Plus, TensorFlow Lite’s GPU delegation was used to tap into

the Raspberry Pi’s built-in GPU. This was super helpful for lighter models like MobileNet-SSD because

it offloaded some of the heavy lifting to the GPU, making the overall frame rate much better. Table 1

shows the performance of both models on the Raspberry Pi and Jetson Nano.

Table 1. The performance of both models on the Raspberry Pi and Jetson Nano.

Platform Model Optimizations Used Average FPS Inference Speed

Raspberry Pi 4 MobileNet-SSD Quantization, ARM NEON 10-12 FPS Stable for real-

time video

YOLOv4-tiny Quantization 8-10 FPS Slower than

MobileNet-SSD

-

Jetson Nano MobileNet-SSD TensorRT, GPU

acceleration

32 FPS Smooth

performance

YOLOv4-tiny TensorRT, GPU

acceleration

28-30 FPS High FPS in real-time

detection

-

Once everything was optimized, we deployed the models on both the Raspberry Pi 4 and Jetson

Nano. Google Colab was the go-to platform for preparing the models for deployment, and then we used

Python scripts and OpenCV to set them up to process live video feeds. The Raspberry Pi did a solid job

with real-time video processing for object detection even with its limited processing power. After

quantizing the MobileNet-SSD model, it managed to hit 10-12 FPS consistently, while YOLOv4-tiny was

a bit slower, coming in at 8-10 FPS. These results show that even with limited hardware, lightweight

Abdulhaq & Ahmed, 2025 IJEES

Page | 112

models can still be used for real-time tasks like surveillance or smart home applications. The Jetson

Nano, on the other hand, really showed what it could do. With TensorRT optimizations, YOLOv4-tiny

hit 28-30 FPS, while MobileNet-SSD reached 32 FPS in real-time detection tests as shown in Figure 8.

The performance was much smoother, thanks to the GPU acceleration, which helped the system process

frames even with heavier workloads.

Figure 8. Object detection results from the YOLOv4 model, showing bounding boxes and confidence

scores for identified objects in a test image.

Results were evaluated in scenarios like detecting objects in cluttered environments and under

varying lighting conditions. Both the Jetson Nano and Raspberry Pi platforms demonstrated real-time

processing capabilities, though the Jetson Nano was better suited for high-performance tasks that

required faster processing.

7. Discussion

The results from this study really highlight both the challenges and potential of deploying object

detection models on embedded systems. YOLOv4-tiny performed really well in detecting objects in

complex, fast-moving scenes, making it a solid choice for dynamic environments. On the other hand,

MobileNet-SSD showed superior speed, especially when there were fewer objects to detect, which

makes it great for situations where you need fast performance but not necessarily high object density.

When it comes to real-time processing, the Jetson Nano really stood out, thanks to its GPU acceleration,

achieving significantly higher frames per second (FPS) compared to the Raspberry Pi, which only relies

on its CPU. That said, while the Jetson Nano provides excellent performance, the Raspberry Pi remains

a top choice for low-cost, low-power applications. It's a fantastic option if you're working with a tight

budget or don’t need the raw processing power that the Jetson Nano offers.

These results have important implications for real-world applications, especially in areas like

surveillance, robotics, and smart home technologies. The Jetson Nano would be ideal for high-

performance tasks, like tracking objects in crowded areas, where it’s crucial to have fast and reliable

detection. The Raspberry Pi, on the other hand, would be a great fit for simpler tasks, where you’re

looking for something cost-effective that can still deliver solid results.

Of course, there are limitations to this study. While researchers did see significant improvements in

performance, the accuracy of both models dropped a bit when tested on our custom dataset, especially

when detecting smaller or low-contrast objects. This suggests that while the models can handle general

object detection well, they might struggle with certain edge cases. Additionally, the study didn’t take

into account some extreme environmental conditions, like poor lighting or rapid movement, which can

definitely affect detection accuracy. These are important factors to consider when thinking about

Abdulhaq & Ahmed, 2025 IJEES

 Page | 113

deploying these models in the real world, where lighting can vary, and things don’t always stay still.

Despite these limitations, the results demonstrate that object detection on embedded systems is not only

possible but can be quite effective when optimized correctly.

8. Practical Implementations in Surveillance and Robotics

Real-time object detection models YOLOv4-tiny and MobileNet-SSD have shown great promise in

real-world applications, particularly in surveillance and robotics. These models excel in environments

where cost-effectiveness, low power consumption, and real-time decision-making are crucial. The

ability of YOLOv4-tiny and MobileNet-SSD to detect objects in dynamic environments has transformed

the field of surveillance. These models can monitor public spaces, industrial zones, or residential areas,

identifying potential threats or anomalies in real-time. For example, an optimized YOLOv4-tiny model

deployed on the Nvidia Jetson Nano can process live video feeds from security cameras, detecting

objects like unauthorized personnel, unattended bags, or vehicles with suspicious patterns. The Jetson

Nano’s GPU-accelerated performance ensures that the system can detect objects with high precision

and speed.

A. Case Study: Urban Surveillance

In urban settings, where congestion and constant movement pose significant challenges, the Jetson

Nano-powered YOLOv4-tiny model was able to handle multiple objects simultaneously. For instance,

in a surveillance setup in a busy parking lot, the model detected vehicles, pedestrians, and even objects

partially occluded by other vehicles or barriers. The optimized detection speed of 28-30 FPS allowed for

real-time tracking, making the system highly effective for smart city applications. The integration of

real-time object detection into robotics offers significant improvements in navigation, obstacle

avoidance, and task automation. Drones and autonomous vehicles, equipped with YOLOv4-tiny and

MobileNet-SSD, can navigate through dynamic environments, avoid obstacles, and interact with objects

of interest.

B. Case Study: Drone-based Wildlife Monitoring

In conservation efforts, drones equipped with YOLOv4-tiny were deployed in a forest reserve for

wildlife monitoring. The model efficiently detected animals, such as deer and endangered species, in

real-time, even in challenging environments with dense foliage. The real-time processing capability

ensured that the drone could navigate and make decisions autonomously while detecting and tracking

wildlife across large areas as demonstrated in Figure 11. While the models demonstrated impressive

results in controlled environments, their performance in real-world conditions revealed additional

challenges that must be addressed for more robust deployment. Factors such as lighting conditions,

object occlusion, and network instability can significantly affect the detection accuracy.

A. Challenges Encountered

During this research, a number of challenges emerged, particularly in the implementation and

deployment of object detection systems on embedded platforms. One of the main challenges was

balancing performance with hardware limitations of devices such as the Raspberry Pi and Jetson Nano.

Despite applying optimization techniques such as quantization and sorting, the Raspberry Pi struggled

to maintain real-time performance, especially when handling high-resolution input or processing

multiple items in a random environment. In scenarios with high object density, the system occasionally

experiences frame drops, affecting the overall detection accuracy and speed.

Additionally, the Jetson Nano, performing better than the Raspberry Pi, faced its own problems,

especially with thermal trotting. The prolonged use of the device under heavy computational burden

led to overheating, reducing its processing capabilities. To reduce this, an active cooling system was

needed, which increased the complexity of deployment. Furthermore, quantization and harvesting,

although effective in reducing the size of the model and increasing the speed of estimation, introduce a

tradeoff especially when smaller or fewer opposing objects are detected.

Abdulhaq & Ahmed, 2025 IJEES

Page | 114

Figure 9. Wildlife detection using a drone equipped with YOLOv4-tiny. The left image shows animal detection in

a wetland environment, while the right image demonstrates detection in a dry, forested area. Bounding boxes

with confidence scores highlight the detection.

These challenges highlighted the delicate balance between model accuracy and optimization for

embedded systems. Another important issue concerned the compatibility and integration of different

software and hardware components. Different versions of libraries, such as Tensor Flowlight, Tensor

RT, and Open CV, occasionally cause inconsistencies in versions, causing delays and requiring manual

intervention. Network instability during real-time video processing, especially when using external IP

cameras, also poses a challenge, as delays and connection drops disrupted data flow, affecting overall

performance. These constraints provided valuable lessons in the need for robust hardware-software

integration to ensure consistent and reliable operation in system design, optimization, and real-world

deployments.

9. Conclusions

In this study, the researcher evaluated the feasibility of deploying real-time object detection models,

ULOV4-small and mobile Net-SSD, on embedded platforms such as the Raspberry Pi and Nvidia Jetson

Nano. Studies show that with appropriate optimization techniques, such as quantization, sorting, and

hardware speed, it is possible to detect objects in real time on systems that limit these resources. The

results showed that YOLOV4-Small performed best in detecting medium-to-large objects, while Mobile

Net-SSD performed exceptionally well in real-time processing, especially in dynamic environments.

The Jetson Nano overtook the Raspberry Pi with its GPU high-speed capabilities, achieving significantly

higher FPS, making it more suitable for high-performance tasks.

The Raspberry Pi, on the other hand, although limited by its CPU, still demonstrates feasibility for

lightweight applications such as basic monitoring systems. Optimization techniques, especially

quantization, were important in reducing model size and improving estimation speeds without

compromising accuracy. However, challenges such as low accuracy in low light conditions, object

inhibition, and the need for real-time processing under various environmental factors highlighted the

limitations of existing models and systems.

For future work, several directions can be explored to further enhance the performance and

applicability of object detection systems on embedded platforms. First, expanding the datasets to

include images taken under different environmental conditions, such as low light and random settings,

will help improve model robustness. Adding additional sensors such as infrared or thermal cameras

can also increase detection in difficult situations. More optimization techniques, such as knowledge

dissimilarity and model ensemble methods, can potentially increase accuracy while maintaining real-

time performance. Additionally, the integration of Edge AI and multi-device collaboration offers a

promising way to distribute computational load, increase system efficiency, and scalability. Finally,

Abdulhaq & Ahmed, 2025 IJEES

 Page | 115

addressing the power consumption and thermal management of embedded devices, especially in long-

term deployment, will be necessary to ensure reliability and efficiency in real-world applications. This

development could expand the scope of embedded AI systems in a wide range of sectors, including

smart cities, healthcare and industrial automation.

Author Contributions: Author has contributed significantly to the development and completion of this article.

Funding: This article received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The author would likes to express their sincere gratitude to College of Electronic Technology Bani

Walid, and Bani Waleed University, Libya, for their invaluable support and resources throughout the course of this

research.

Conflicts of Interest: The author(s) declare no conflict of interest.

ORCID

Kareemah Abdulhaq https://orcid.org/0009-0002-7987-2102

Abdussalam Ali Ahmed https://orcid.org/0000-0002-9221-2902

References

[1] Y. Feng et al., “Application of artificial intelligence-based computer vision methods in liver

diseases: a bibliometric analysis,” Intell. Med., 2025.

[2] M. Khaleel, A. Jebrel, and D. M. Shwehdy, “Artificial intelligence in computer science,” Int. J.

Electr. Eng. and Sustain., pp. 01–21, 2024.

[3] H. Lindroth et al., “Applied artificial intelligence in healthcare: A review of computer vision

technology application in hospital settings,” J. Imaging, vol. 10, no. 4, 2024.

[4] A. Ettalibi, A. Elouadi, and A. Mansour, “AI and computer vision-based real-time quality control:

A review of industrial applications,” Procedia Comput. Sci., vol. 231, pp. 212–220, 2024.

[5] S. U. Islam, G. Ferraioli, V. Pascazio, S. Vitale, and M. Amin, “Performance analysis of YOLOv3,

YOLOv4 and MobileNet SSD for real time object detection,” TST, vol. 5, no. 2, pp. 37–49, 2024.

[6] R. K. Mandava, H. Mittal, and N. Hemalatha, “Identifying the maturity level of coconuts using

deep learning algorithms,” Mater. Today, 2023.

[7] H. Yang, J. Jing, Z. Wang, Y. Huang, and S. Song, “YOLOV4-TinyS: a new convolutional neural

architecture for real-time detection of fabric defects in edge devices,” Text. Res. J., vol. 94, no. 1–

2, pp. 49–68, 2024.

[8] M.-F. Lei et al., “Intelligent recognition of joints and fissures in tunnel faces using an improved

mask region-based convolutional neural network algorithm,” Comput.-aided Civ. Infrastruct. Eng.,

vol. 39, no. 8, pp. 1123–1142, 2024.

[9] I. Shukhratov, A. Pimenov, A. Stepanov, N. Mikhailova, A. Baldycheva, and A. Somov, “Optical

detection of plastic waste through computer vision,” Intelligent Systems with Applications, vol. 22,

no. 200341, p. 200341, 2024.

[10] T. Hu, Z. Gong, and J. Song, “Research and implementation of an embedded traffic sign detection

model using improved YOLOV5,” Int. J. Automot. Technol., vol. 25, no. 4, pp. 881–892, 2024.

[11] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv [cs.CV], 2018.

[12] K. Rzepka, P. Szary, K. Cabaj, and W. Mazurczyk, “Performance evaluation of Raspberry Pi 4

and STM32 Nucleo boards for security-related operations in IoT environments,” Comput. Netw.,

vol. 242, no. 110252, p. 110252, 2024.

[13] T. P. Swaminathan, C. Silver, and T. Akilan, “Benchmarking deep learning models on NVIDIA

Jetson Nano for real-time systems: An empirical investigation,” arXiv [cs.AR], 2024.

https://orcid.org/0000-0002-9221-2902

Abdulhaq & Ahmed, 2025 IJEES

Page | 116

[14] A. S. Satyawan, P. A. Utomo, H. Puspita, and I. Y. Wulandari, “360-degree Image Processing on

NVIDIA Jetson Nano,” Internet of Things and Artificial Intelligence Journal, vol. 4, no. 2, pp. 172–

186, 2024.

[15] K. Mallikharjuna Rao, G. Saikrishna, and K. Supriya, “Data preprocessing techniques: emergence

and selection towards machine learning models - a practical review using HPA

dataset,” Multimed. Tools Appl., 2023.

[16] Z. Wang, Z. Cheng, C. Wang, Z. Wu, S. Wang, and H. Xu, “A method for extracting physiological

parameters of anesthetic patients based on video,” in Proceedings of the 2024 4th International

Conference on Bioinformatics and Intelligent Computing, 2024.

[17] K. Aminiyeganeh, R. W. L. Coutinho, and A. Boukerche, “IoT video analytics for surveillance-

based systems in smart cities,” Comput. Commun., vol. 224, pp. 95–105, 2024.

[18] P. Mittal, “A comprehensive survey of deep learning-based lightweight object detection models

for edge devices,” Artif. Intell. Rev., vol. 57, no. 9, 2024.

[19]

[20]

[21]

[22]

[23]

[24]

Y. Yang, L. Li, G. Yao, H. Du, Y. Chen, and L. Wu, “An modified intelligent real-time crack

detection method for bridge based on improved target detection algorithm and transfer

learning,” Front. Mater., vol. 11, 2024.

H. Lu, K. Liu, W. Sun, and P. A. Simionescu, “Precise soil coverage in potato planting through

plastic film using real-time image recognition with YOLOv4-tiny,” Sci. Rep., vol. 14, no. 1, p.

16817, 2024.

N. Al Musalhi, A. M. Al Wahaibi, and M. Abbas, “Implementing real-time visitor counter using

surveillance video and MobileNet-SSD object detection: The best practice,” Baghdad Sci. J., vol.

21, no. 5(SI), p. 1775, 2024

K. N. Bromm, I.-M. Lang, E. E. Twardzik, C. L. Antonakos, T. Dubowitz, and N. Colabianchi,

“Virtual audits of the urban streetscape: comparing the inter-rater reliability of GigaPan® to

Google Street View,” Int. J. Health Geogr., vol. 19, no. 1, p. 31, 2020.

T. Hayashi, T. Shimizu, and Y. Fukami, “Collaborative problem solving on a data platform

Kaggle,” arXiv [cs.CY], 2021.

M. Khaleel, A. A. Ahmed, and A. Alsharif, “Artificial Intelligence in Engineering,” Brilliance:

Research of Artificial Intelligence, vol. 3, no. 1, pp. 32–42, 2023.

Appendices

Code for Loading Yolo Model

import cv2

import os

import numpy as np

import matplotlib.pyplot as plt

 #Paths to YOLO configuration and weights files

config_path = '/kaggle/input/yolov4-object-detection/darknet/cfg/yolov4.cfg'

weights_path = '/kaggle/input/yolov4-object-detection/darknet/yolov4.weights '

 #Load YOLO model

net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

 #Set preferable backend and target

net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)

net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)

print("YOLO model loaded successfully!")

 #Load COCO classes

Abdulhaq & Ahmed, 2025 IJEES

 Page | 117

classes_path = '/kaggle/input/yolov4-object-detection/darknet/data/coco.names '

with open(classes_path, 'r') as f:

 classes = [line.strip() for line in f.readlines()]

print(f"Loaded {len(classes)} classes.")

 #Get the output layers names once (this is required for forward pass)

layer_names = net.getLayerNames)(

output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]

 #Directory containing COCO dataset images

image_dir = '/kaggle/input/2017-2017/val2017/val2017 / '

image_files = os.listdir(image_dir)

 #Process each image in the dataset

for image_file in image_files:

 image_path = os.path.join(image_dir, image_file)

 image = cv2.imread(image_path)

 if image is None :

 print(f"Error loading image: {image_file}")

 continue

 # Preprocess the image

 blob = cv2.dnn.blobFromImage(image, scalefactor=1/255.0, size=(416, 416) ,

 swapRB=True, crop=False)

 net.setInput(blob)

 # Perform detection

 outputs = net.forward(output_layers)

 # Parse the detections

 height, width = image.shape[:2]

 boxes, confidences, class_ids][,][,][=

 for output in outputs :

 for detection in output:

 scores = detection[5:]

 class_id = np.argmax(scores)

 confidence = scores[class_id]

 if confidence > 0.5: # Confidence threshold

 box = detection[0:4] * np.array([width, height, width, height])

 centerX, centerY, w, h = box.astype("int")

 x = int(centerX - (w / 2))

 y = int(centerY - (h / 2))

 boxes.append([x, y, int(w), int(h)])

 confidences.append(float(confidence))

 class_ids.append(class_id)

 # Apply Non-Maximum Suppression

 indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)

 if len(indices) > 0:

 filtered_boxes = [(boxes[i], confidences[i], class_ids[i]) for i in indices.flatten()]

 else :

Abdulhaq & Ahmed, 2025 IJEES

Page | 118

 filtered_boxes][=

 # Draw bounding boxes and labels on the image

 for box, confidence, class_id in filtered_boxes :

 x, y, w, h = box

 label = f"{classes[class_id]}: {confidence:.2f} "

 color = (0, 255, 0)

 cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)

 cv2.putText(image, label, (x, y - 10) ,

 cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

 # Display the image with detections

 plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

 plt.axis("off")

 plt.title(image_file)

 plt.show)(

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

licence, and indicate if changes were made. The images or other third-party material in this article are included in

the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation

or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy

of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

http://creativecommons.org/licenses/by-sa/4.0/

