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Abstract: Supercapacitors (SCs), also known as electrochemical capacitors, have emerged as promising energy 

storage devices due to their high-power density, rapid charge–discharge capabilities, and long cycle life. Central to 

their performance is the selection and optimization of materials used in electrodes, electrolytes, separators, and 

current collectors. This article presents a comprehensive review of the latest advancements in supercapacitor 

materials, focusing on carbon-based structures, metal oxides, conducting polymers, and emerging hybrid 

composites. The role of electrolytes—aqueous, organic, and ionic liquids—in determining the electrochemical 

window and overall device efficiency is also discussed. Furthermore, the article explores recent trends such as 

nanostructuring, sustainable material synthesis, and solid-state supercapacitor design. Applications of SCs across 

portable electronics, electric vehicles, renewable energy systems, and grid storage are examined in detail. Finally, 

the paper identifies existing challenges in enhancing energy density, mechanical stability, and cost-effectiveness, 

and highlights future perspectives including the use of AI-assisted material discovery and hybrid energy system 

integration. 
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1. Introduction  

In the face of accelerating climate change and the global energy transition, the demand for efficient, 

reliable, and sustainable energy storage systems has intensified. Supercapacitors (SCs), also known as 

ultracapacitors or electrochemical capacitors, have emerged as promising alternatives or complements 

to conventional batteries and dielectric capacitors [1,2]. They offer unique advantages such as high-

power density, rapid charging and discharging, long cycle life, and wide operating temperatures. These 

characteristics make them highly suitable for various modern applications, from portable electronics 

and electric vehicles (EVs) to renewable energy systems and industrial backup power. As energy storage 

technologies evolve to meet the demands of next-generation smart grids and green technologies, 

supercapacitors are gaining increased attention in research and industry alike [3-7]. 

The performance of a supercapacitor is primarily governed by the materials used in its electrodes, 

electrolytes, and separators. Among these, the electrode materials play the most critical role in 

determining the device's capacitance, energy density, rate capability, and long-term stability. Over the 

past two decades, extensive efforts have been made to explore and optimize a wide range of materials 

for supercapacitor electrodes [8-10]. These include traditional carbon-based materials such as activated 

carbon and carbon nanotubes, advanced nanostructured materials like graphene, and pseudocapacitive 

materials such as metal oxides and conducting polymers. The development of hybrid and composite 

materials, which combine the advantageous properties of multiple constituents, has further enhanced 
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the electrochemical performance of supercapacitors, bridging the gap between energy density and 

power capability. 

SCs function primarily as pulse current systems, engineered to deliver exceptionally high specific 

power—often exceeding 10,000 W·kg⁻¹—for short durations typically under one minute. This unique 

capability renders them suitable for deployment either as standalone energy storage devices or in 

hybrid configurations with batteries, thereby enhancing overall power efficiency and prolonging cycle 

life in demanding applications such as hybrid electric vehicles, cranes, railway systems, and elevators 

[10-13]. The foundational concept of the SC was first introduced in 1957 through the issuance of an early 

patent. However, commercial interest in supercapacitor technology remained relatively limited until 

the 1990s, when its potential was increasingly recognized, particularly in the context of hybrid electric 

vehicle systems. Recent advancements have focused on optimizing the electrical performance of SCs 

through the development of advanced electrode materials, thereby expanding their applicability across 

diverse sectors [13-17]. 

 In power electronics and electric drive systems, various types of supercapacitors are already 

integrated to address high instantaneous power demands, such as those required during system start-

up and regenerative braking. As a result, SCs have emerged as a robust and reliable energy storage 

solution for numerous applications, including backup power systems designed to mitigate the impact 

of electrical power disruptions. In this direction, the fundamental components of a Superconducting is 

illustrated in Figure 1. Typically, the system consists of three primary elements: (i) a superconducting 

coil magnet—either based on low-temperature superconductors (LTS) or high-temperature 

superconductors (HTS), responsible for storing energy in the form of a persistent magnetic field; (ii) a 

cryogenic refrigeration unit that maintains the superconducting state by cooling the system below the 

critical temperature; and (iii) a cryogenic medium, typically liquid helium or nitrogen, used to facilitate 

and sustain the low-temperature environment required for superconductivity [17]. 

 

Figure 1. General components of SC [17]. 

 

In the context of supercapacitors (SCs), Figure 2 illustrates the fundamental structure and operational 

dynamics during (a) the charging process and (b) the discharging process. Unlike conventional 

batteries, SCs store energy through electrostatic mechanisms, which enable ultra-fast charging and 

discharging cycles. However, one of the notable drawbacks of SCs is their relatively high self-discharge 

rate, which can be particularly pronounced under cryogenic conditions. The immersion of SC systems 

in cryogenic liquids, such as liquid nitrogen, facilitates self-cooling but also introduces additional 

complexity in managing energy retention. Despite this, cryogenic cooling may offer specific advantages 

in reducing internal resistance and improving power performance, making SCs potentially viable for 

specialized applications in low-temperature environments. 

 

 



  

Amer et al., 2025 IJEES 
 

 

 

 

  Page | 3 

 

  

(a) (b) 
Figure 2. The main structure of SC, (a) the charging process, and (b) the discharging process [17]. 

 

In particular, supercapacitors (SCs) have garnered increasing attention over conventional batteries 

due to their exceptional charge-storage kinetics—characterized by significantly reduced discharge times 

(typically 1–10 seconds for SCs compared to 10–60 minutes for lithium-ion batteries)—and superior 

cyclic durability, often exceeding 30,000 hours in contrast to the approximately 500-hour lifespan of 

standard battery systems. Although traditionally constrained by relatively low energy density, recent 

breakthroughs in the development of advanced electrode materials and optimized electrolyte 

formulations have considerably enhanced the functional capabilities of SCs [17]. These innovations 

position supercapacitors as a compelling intermediary technology capable of bridging the performance 

gap between conventional batteries, fuel cells, and traditional electrolytic capacitors, particularly in 

applications demanding both high power density and extended operational longevity [18-21]. 

A few studies have explored the materials employed in supercapacitors, focusing on their 

applications and recent developments. These investigations provide valuable insights into the design, 

functionality, and performance optimization of electrode and electrolyte materials, which are critical to 

advancing supercapacitor technology. The following studies exemplify significant contributions to this 

evolving research landscape. 

Ramzan et al. [22] underscore the potential of metal-organic frameworks (MOFs) as advanced 

electrode materials, emphasizing their inherently high specific surface area and the abundance of 

exposed active sites—attributes that critically enhance charge storage performance in SC applications. 

In particular, nickel-based bimetallic MOFs (Ni-BMOFs) have emerged as highly promising 

electroactive candidates for SCs. The incorporation of nickel within the MOF architecture significantly 

improves the intrinsic physicochemical properties, while also promoting the development of extensive 

porosity and structural defects through the synergistic interaction of the constituent metal ions. 

Nevertheless, the complex reaction mechanisms and the specific roles of active sites within Ni-BMOFs 

remain inadequately understood, primarily due to their heterogeneous structural nature. 

Raza et al. [23] highlight the growing prominence of SCs as high-performance energy storage 

systems, particularly in response to the escalating demand for both low-power electronic applications—

such as wearable and portable devices—and high-power military technologies, including guided 

missile systems and advanced naval warheads. The electrochemical performance of SCs is 

fundamentally governed by the intricate interplay between electrode and electrolyte materials, with 
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their charge storage capacities being markedly influenced by the selection and design of these 

components, particularly through surface redox reactions and related interfacial phenomena. 

Wang et al. [24] emphasize that the development of highly efficient and cost-effective 

supercapacitors represents one of the most promising strategies to address the intermittency and 

geographical disparities associated with the integration of renewable energy sources such as 

hydropower, wind, and solar energy. As the fundamental components governing the electrochemical 

performance of supercapacitors, electrode materials necessitate careful design and optimization. 

Among various candidates, nickel–carbon composites have garnered significant attention in recent 

years due to their low production cost, superior mechanical robustness, and exceptional electrochemical 

properties—particularly high specific capacitance and prolonged cycle life—stemming from the strong 

interfacial compatibility and synergistic interaction between nickel and carbon. 

Zuo et al. [25] underscore the critical importance of designing and fabricating electrochemical energy 

storage systems that simultaneously deliver high energy and power densities alongside prolonged 

cycling stability. Among such systems, battery–supercapacitor hybrid devices (BSHs) have emerged as 

highly promising solutions, owing to their strategic integration of a high-capacity battery-type electrode 

with a high-rate capacitive electrode. This hybrid configuration enables BSHs to fulfill the rigorous 

demands of next-generation energy storage technologies, with potential applications spanning electric 

vehicles, smart power grids, and compact electronic or optoelectronic devices. 

Despite these advancements, several challenges remain in terms of improving energy density, 

ensuring mechanical and chemical stability, lowering production costs, and enabling large-scale 

manufacturing. Moreover, the search for eco-friendly and sustainable materials has gained momentum 

as the global focus shifts toward greener technologies. This article presents a comprehensive overview 

of the current state of supercapacitor materials, highlighting their key properties, limitations, and recent 

developments. Furthermore, it explores the broad range of supercapacitor applications across multiple 

sectors and discusses emerging trends and future directions in material innovation aimed at enhancing 

the efficiency and adaptability of supercapacitors for next-generation energy storage systems. 

2. Materials of Supercapacitors 

The performance and characteristics of supercapacitors (SCs) are fundamentally governed by the 

selection of electrode and electrolyte materials. In recent years, significant progress has been made in 

the investigation of advanced materials that can enhance the energy and power densities, cycle stability, 

and cost-efficiency of SC systems. Numerous comprehensive studies have focused on hierarchical and 

hexahedral electrode architectures, underscoring the central role materials will play in shaping the next 

generation of SC technologies. SC components are generally categorized into four primary material 

classes: electrode materials, electrolyte materials, separators, and current collectors [26]. 

SC electrodes are typically fabricated as thin conductive layers affixed to a current collector, forming 

the core sites for charge accumulation and transfer. The ideal electrode material must exhibit high 

electrical conductivity, chemical stability, low cost, low corrosion susceptibility, and environmental 

compatibility. Carbon-based materials remain the most widely used for electric double-layer capacitors 

(EDLCs) due to their structural versatility and electrochemical properties. Commonly employed 

carbonaceous materials include activated carbon (AC), carbon aerogels, carbon nanotubes (CNTs), 

graphene, and graphite [27-29]. Although activated carbon offers sufficient performance for EDLC 

electrodes, its electrical conductivity is lower than that of metallic conductors. A solid, compact form of 

activated carbon known as consolidated amorphous carbon (CAC) is extensively utilized, offering 

improved performance. Activated carbon fibers (ACFs), typically with diameters around 10 µm, are 

derived from processed activated carbon and offer high surface area-to-volume ratios. Another 

promising class is carbide-derived carbons (CDCs), which are tuneable nanoporous materials offering 

tailored pore size distribution for enhanced ion transport. Random porous carbon structures are also 

commonly explored due to their ease of fabrication and favorable surface area characteristics [28-30]. 

In addition to carbon-based materials, metal oxides such as manganese dioxide (MnO₂) and 

ruthenium dioxide (RuO₂) are widely used as pseudocapacitive electrode materials. These materials 
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exhibit Faradaic charge storage behavior through fast and reversible redox reactions at or near the 

surface of the active electrode. As illustrated in Figure 3, these pseudocapacitors differ from EDLCs by 

incorporating Faradaic processes into the energy storage mechanism, thereby enabling significantly 

higher specific energies. Graphene, with its single-atom-thick hexagonal lattice structure, has also 

emerged as a high-performance material due to its exceptional conductivity, mechanical strength, and 

large specific surface area. Nanocomposite materials incorporating graphene and other conductive 

polymers continue to receive attention for their synergistic electrochemical advantages. All commercial 

hybrid SCs are asymmetric and incorporate an electrode. 

 

  
(a) (b) 

Figure 3. (a) Scanning probe microscopy image of graphene; (b) pseudocapacitance surface of RuO2 cathode. 

 

While a substantial portion of recent supercapacitor (SC) research has centered on electrode 

materials, the role of electrolytes in governing device performance is equally critical. Electrolytes, 

composed of a solvent and dissolved ionic species, facilitate ionic conductivity and determine the 

electrochemical environment within the SC cell. Their primary function is to provide mobile ions that 

enable charge separation and energy storage at the electrode–electrolyte interface. The choice of 

electrolyte significantly influences key performance parameters such as cell voltage, internal resistance, 

electrochemical stability, and energy density [30-33]. 

Currently, three main classes of electrolytes are employed in SCs: aqueous, organic, and ionic liquids. 

Aqueous electrolytes, commonly based on inorganic salts dissolved in water, offer high ionic 

conductivity and are cost-effective and environmentally benign. However, their use is limited by a 

narrow electrochemical stability window, with water undergoing decomposition at approximately 1.15 

V per electrode. Despite this limitation, aqueous systems are preferred in applications where high 

specific power and rapid charge/discharge rates are prioritized. Organic electrolytes, which utilize 

organic solvents such as acetonitrile or propylene carbonate, offer a wider electrochemical stability 

window—typically allowing cell voltages in the range of 2.5 to 3.0 V. This enables significantly higher 

energy densities compared to aqueous systems [32-35]. Moreover, organic electrolytes are thermally 

more stable and suitable for broader temperature ranges. However, they are often more expensive and 

pose safety concerns due to their flammability and volatility. Ionic liquid electrolytes represent a third 

category, composed entirely of room-temperature molten salts. These systems are non-volatile, non-

flammable, and thermally stable, allowing for operational voltages exceeding 3.5 V. Although their 

electrochemical and thermal stability is superior, ionic liquids suffer from lower ionic conductivity and 

higher viscosity, which can impede charge transport and reduce power performance [36-38]. Despite 

these drawbacks, they remain a promising choice for high-voltage, long-life SC applications. 

In addition to separators, current collectors are essential in maintaining efficient electron flow 

throughout the SC system. Since most active electrode materials—particularly carbon-based 

structures—possess limited intrinsic electrical conductivity, external current collectors are required to 
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facilitate charge transfer and support high charge–discharge currents. These collectors must be 

lightweight, corrosion-resistant, and capable of withstanding repetitive electrochemical cycling.  

3. Supercapacitors: Emerging Energy Stores 

With ongoing technological advancements in electrically powered systems—particularly in terms of 

charge/discharge cycle life, rapid energy transfer, and high specific power—supercapacitors (SCs) have 

emerged as viable and promising candidates across a wide spectrum of applications [39-42]. These 

include sectors demanding both high and stable energy throughput, such as hybrid electric vehicles, 

precision automation systems, microelectronic components, and portable consumer electronics. The 

inherent capability of SCs to deliver rapid and efficient power output makes them especially suitable 

for systems where high-power density is prioritized over long-duration energy storage. Nevertheless, 

the intrinsic limitation of SCs lies in their relatively low energy density compared to conventional 

batteries [42-44].  

      SCs serve as a crucial intermediary technology, effectively bridging the performance gap between 

conventional dielectric capacitors and electrochemical batteries in terms of cell voltage, specific power, 

and operational cost. While traditional dielectric capacitors are ideally suited for applications requiring 

rapid energy storage and release, offering instantaneous power delivery capabilities as high as 196 

kW·kg⁻¹—approximately 10 to 100 times greater than those of electrolytic capacitors—SCs extend these 

capabilities further by offering markedly enhanced energy densities. Specifically, SCs can attain energy 

densities in the range of 0.5–0.6 kJ·L⁻¹, vastly surpassing the approximate 0.01 Wh·L⁻¹ achievable with 

conventional dielectric capacitors [45-47]. These properties render SCs particularly advantageous for 

dynamic energy recovery applications, such as regenerative braking in transportation systems, where 

both high-power output and rapid response times are critical. Figure 4 illustrates Ragone plots for 

energy storage devices that are representative of the industry, including supercapacitors, fuel cells, and 

batteries. 

 

 
Figure 4. Ragone plots for energy storage devices that are representative of the industry, including 

supercapacitors, fuel cells, and batteries. 

 

The distinctive attributes of SCs, including elevated power densities and swift charge–discharge 

kinetics, enable them to deliver stable and reliable power throughput across a range of high-

performance systems. The relationship between energy and power density in energy storage devices is 

often illustrated using the Ragone plot, which provides a comparative graphical representation of 

various storage technologies. While the Ragone plot is a valuable tool for understanding the trade-off 

between energy and power density, it falls short of incorporating other essential parameters such as 

cost-effectiveness, long-term cycle stability, and safety [48-51]. Therefore, a comprehensive evaluation 
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of energy storage systems must consider these additional metrics to accurately assess the practical 

viability and technological potential of supercapacitors in real-world applications. 

The fundamental distinctions between batteries and SCs in terms of charge storage mechanisms, 

power limitations, energy density, charge/discharge rates, and service life are systematically illustrated 

in Figure 5. Unlike batteries, which are constrained by kinetically limited electrochemical processes 

during charging, SCs exhibit symmetrical high charge and discharge rates due to their electrostatic or 

surface redox-based energy storage mechanisms. A particularly notable advantage of SCs lies in their 

extended cycle life, ranging from 30,000 to over 1,000,000 cycles, significantly outperforming 

conventional batteries, which typically sustain only around 500 cycles. Furthermore, SCs are capable of 

near-instantaneous recharging—often within 1 to 10 seconds—whereas batteries require considerably 

longer recharge durations, typically between 10 and 60 minutes [50-53]. 

 

  
Figure 5.  The comparison of batteries and SCs based on various operational parameters. 

 

A comparative summary of key attributes—such as specific energy, cycle life, charge/discharge 

duration, and the underlying charge storage mechanism—between conventional capacitors, SCs, and 

batteries is presented in Table 1. This comparison highlights the superior durability of SCs, which stems 

from their non-Faradaic or quasi-Faradaic storage processes that avoid irreversible chemical 

transformations. Among the various parameters used to evaluate energy storage devices, operating 

temperature range is particularly critical, especially in harsh or variable environments. The thermal 

robustness of SCs can be significantly enhanced through strategic selection of electrode materials and 

electrolytes, enabling reliable performance across a broad temperature window ranging from –40 °C to 

100 °C. In contrast, batteries typically operate within a narrower range of –20 °C to 60 °C, which further 

limits their applicability in extreme-temperature applications. 

 
Table 1. A comparison of the fundamental performance metrics of various electrochemical energy storage 

systems [54-58]. 

Num. Characteristics Capacitor Supercapacitor Battery 

1 Specific energy (Wh kg⁻¹) < 0.1 Up to 1091.0 Up to 1606.0 

2 Specific power (W kg⁻¹) > 10,000 Up to 19,6000 < 1000 

3 Discharge time 10⁻⁶ – 10⁻³ s s to min 0.03–3 h 

4 Charge time 10⁻⁶ – 10⁻³ s s to min 1–5 h 

5 Coulombic efficiency (%) About 100.0 Up to 99.0 70.0–85.0 

6 Cycle life Almost infinite > 500,000.0 About 1000.0 

7 Charge storage determinants Electrode area and 

dielectric 

Microstructure of 

electrode and 

electrolyte 

Thermodynamics 

and active mass 

Supercapacitors

Electrolyte 
Conductivity

High, same 
as discharge

Side 
reaations

Physical

Limited 
surface area

Battery

Reaction 

Kinetics, 
mass 

transport

Kinetically 
limited

Mechanicall
y stable 

Chemical

High (bulk)
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Table 1 provides a comparative overview of key performance metrics across three primary energy 

storage technologies: conventional capacitors, supercapacitors (SCs), and batteries. This comparative 

analysis reveals the unique operational advantages and limitations of each system, highlighting the 

contexts in which SCs serve as an effective intermediary solution. From a specific energy standpoint, 

batteries demonstrate the highest values (up to 1606 Wh·kg⁻¹), making them the preferred choice for 

applications requiring long-term energy storage. In contrast, capacitors exhibit extremely low energy 

density (<0.1 Wh·kg⁻¹), thereby limiting their role to high-speed but low-capacity charge/discharge 

tasks. Supercapacitors, however, offer a favorable compromise, achieving energy densities up to 1091 

Wh·kg⁻¹—substantially higher than capacitors, though still lower than batteries—making them suitable 

for applications requiring moderate energy capacity with rapid accessibility. With regard to specific 

power, capacitors and SCs significantly outperform batteries. Capacitors deliver power in excess of 

10,000 W·kg⁻¹, with SCs reaching up to 196,000 W·kg⁻¹, whereas batteries lag behind at <1,000 W·kg⁻¹. 

This reinforces the suitability of SCs for high-power, short-duration applications such as regenerative 

braking, voltage stabilization, and pulse power systems. The charge and discharge times further 

underscore the speed advantage of SCs. Capacitors operate on the microsecond to millisecond scale 

(10⁻⁶–10⁻³ s), while SCs manage rapid energy exchange over seconds to minutes. Batteries, conversely, 

require significantly longer durations—typically ranging from 0.03 to 3 hours for discharge and 1 to 5 

hours for full recharge. This latency limits their utility in time-sensitive applications, where SCs or 

capacitors are better suited. Coulombic efficiency, a critical measure of energy retention during cycling, 

is nearly ideal for capacitors (~100%) and remains high for SCs (up to 99%), but is relatively lower in 

batteries (70–85%) due to the inherent inefficiencies of Faradaic processes. Additionally, cycle life is one 

of the most distinguishing attributes of SCs, capable of enduring over 500,000 cycles, compared to ~1,000 

cycles for batteries. Capacitors, by virtue of their purely electrostatic storage mechanism, exhibit almost 

infinite cycling potential. 

4. Applications of Supercapacitors 

Supercapacitors (SCs) have emerged as indispensable energy storage devices in a wide array of 

applications where high-power density, rapid energy delivery, and extended cycle life are essential as 

demonstrated in Figure 6. Their operational characteristics—bridging the gap between conventional 

capacitors and batteries—make them suitable for both standalone and hybrid energy systems. The 

following subsections highlight key application areas in which SCs are making a significant impact. 

 

 
Figure 6. Several Applications of Supercapacitors. 

 

A. Portable Electronics 

In the domain of portable electronic devices, supercapacitors are increasingly utilized due to their 

ability to deliver rapid bursts of energy and support fast recharge cycles. Devices such as digital 

cameras, smartwatches, fitness trackers, and wireless audio systems benefit from the SC's low 

equivalent series resistance (ESR) and excellent power performance [59-61]. These devices often require 

immediate energy availability during short, high-demand intervals—for instance, powering camera 

flashes or initiating Bluetooth connectivity—where traditional batteries may fall short due to slower 
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Electric Vehicles 
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electrochemical kinetics. Moreover, the high durability and compact form factor of SCs contribute to 

extended product lifespan and enhanced user convenience, particularly in wearable technologies. 

B. Electric Vehicles (EVs) 

Electric mobility systems, especially electric vehicles (EVs) and hybrid electric vehicles (HEVs), 

represent one of the most transformative application areas for SCs. SCs are particularly valuable in 

regenerative braking systems, where kinetic energy during deceleration is recovered and stored for 

reuse. Their fast charge–discharge capability allows for efficient energy capture and immediate 

redeployment, thus improving overall energy efficiency and reducing fuel consumption or battery 

strain. In addition to regenerative braking, SCs provide auxiliary power for functions such as engine 

start-stop systems, suspension controls, and onboard electronics [62-64]. Their robustness over 

extensive charge–discharge cycles and wide temperature tolerances makes them highly reliable in 

dynamic automotive environments. 

C. Renewable Energy Systems 

In renewable energy systems, supercapacitors play a vital role in energy smoothing, peak shaving, 

and load balancing. Given the intermittent nature of solar and wind energy sources, energy storage 

systems must rapidly buffer fluctuations and maintain consistent power delivery. SCs are well-suited 

for these tasks due to their superior cycling ability and fast response times. When integrated with 

photovoltaic (PV) panels or wind turbines, SCs help regulate output by compensating for rapid changes 

in input or load demand. This improves the reliability and performance of microgrids, hybrid systems, 

and distributed energy networks, ensuring stability and reducing dependency on fossil-fuel-based grid 

support [65-70]. 

D. Grid Storage and Backup Power 

Supercapacitors are also being adopted in grid-scale and backup power applications, where rapid 

energy availability and resilience are critical. In uninterruptible power supply (UPS) systems, SCs 

provide immediate power during outages or transitions, buying valuable time for backup generators or 

batteries to activate. They are also used for grid frequency stabilization, mitigating short-term voltage 

drops and maintaining power quality across transmission networks. SCs can respond within 

milliseconds, making them ideal for mitigating the effects of power fluctuations and transient 

disturbances. Their long operational life and low maintenance requirements further enhance their 

appeal for utility-scale deployment [71-75]. 

E. Aircraft Systems 

Supercapacitors are increasingly being integrated into modern aircraft systems due to their high-

power density, rapid charge/discharge capability, and long cycle life. They play a crucial role in 

emergency power backup, engine start systems, flight control actuation, and avionics power 

stabilization. In hybrid-electric and fully electric aircraft, supercapacitors complement batteries by 

handling peak power loads during takeoff and landing, thereby optimizing energy efficiency and 

extending battery life. Additionally, they enhance braking energy recovery, support electric de-icing 

systems, and improve UAV performance. Their ability to provide instant power, reduce reliance on 

hydraulic systems, and increase overall energy efficiency makes them a vital component in advancing 

More Electric Aircraft (MEA) and sustainable aviation technologies [76-84]. 

To sum up, the versatility of supercapacitors across a wide range of modern applications underscores 

their pivotal role in the evolving energy storage landscape. From portable electronics to electric vehicles, 

and from renewable energy integration to grid stabilization, SCs have demonstrated unique advantages 

where rapid charge–discharge cycles, high power density, and long operational lifetimes are 

paramount. Their ability to complement or replace traditional batteries in transient power-demand 

scenarios not only enhances system performance but also contributes to improved energy efficiency and 

sustainability. As technological advances continue to optimize the material properties and system 

integration of SCs, their deployment is expected to expand further into emerging sectors such as smart 

infrastructure, advanced robotics, and green mobility. Ultimately, the growing adoption of 
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supercapacitors reflects a broader shift toward flexible, high-performance energy storage solutions 

capable of meeting the demands of next-generation electronic and power systems. 

5. Recent Developments and Trends of Supercapacitor  

Ongoing innovations in material science, device engineering, and fabrication techniques continue to 

push the boundaries of supercapacitor (SC) performance. These advancements not only address 

limitations in energy density and device integration but also align with broader trends in sustainability, 

miniaturization, and multifunctionality. Several key developments have emerged in recent years as 

illustrated in Figure 7, each offering transformative potential for the next generation of energy storage 

technologies [85-91]. 

 

 
Figure 7. Recent developments and trends aspect of Supercapacitor. 

 

A. Nanostructured Materials 

The use of nanostructured materials has significantly improved the electrochemical performance of 

SCs by enhancing surface area, charge transport kinetics, and electrode–electrolyte interactions. 

Nanomaterials such as graphene, carbon nanotubes (CNTs), transition metal dichalcogenides (TMDs), 

and metal–organic frameworks (MOFs) have been engineered into complex architectures to maximize 

active surface sites and minimize ion diffusion paths.  

B. Flexible and Wearable Supercapacitors 

Driven by the rise of wearable and flexible electronics, researchers have developed flexible 

supercapacitors that can conform to non-planar surfaces and withstand mechanical deformation 

without performance degradation. These devices are fabricated using flexible substrates such as 

polymers, textiles, or paper, and incorporate stretchable current collectors and gel-based electrolytes. 

Applications include smart textiles, health monitoring systems, and foldable electronic devices.  

C. Sustainable Materials 

In response to environmental concerns and material scarcity, increasing efforts have focused on 

developing supercapacitors from renewable and biodegradable sources. Biomass-derived carbons—

produced from materials such as coconut shells, wood, agricultural waste, and even food scraps—have 

demonstrated favorable surface properties, tunable porosity, and sufficient conductivity for SC 

applications. These eco-friendly materials reduce reliance on petrochemical-based carbons and lower 

the environmental footprint of SC production. Furthermore, green synthesis routes utilizing low-

temperature and solvent-free processing have been explored to improve the sustainability of electrode 

fabrication. 

D. Solid-State Supercapacitors 

Solid-state SCs represent a significant shift in supercapacitor design by replacing liquid electrolytes 

with solid or gel-based electrolytes. These devices offer superior safety, improved mechanical integrity, 

and greater packaging flexibility—critical features for miniaturized and embedded systems. Solid-state 

designs eliminate leakage risks and enable thinner, compact architectures suitable for integration into 

microelectronic and biomedical devices. Despite challenges related to ionic conductivity and interface 
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compatibility, ongoing research in polymer electrolytes, ionic gels, and composite systems is steadily 

improving the performance and reliability of solid-state SCs. 

To end up, the recent advancements in supercapacitor technology reflect a dynamic convergence of 

materials science, device innovation, and sustainability. The integration of nanostructured materials has 

significantly enhanced electrochemical performance by improving charge transport and surface 

interactions, while the emergence of flexible and wearable supercapacitors has opened new frontiers in 

next-generation electronics. Concurrently, the exploration of sustainable, biomass-derived materials 

and environmentally friendly synthesis methods aligns with global imperatives for green energy 

solutions. The development of solid-state supercapacitors further exemplifies the transition toward 

safer, compact, and more versatile energy storage platforms.  

6. Challenges and Future Perspectives 

A. Challenges  

Although supercapacitors (SCs) have undergone remarkable advancements in recent years—

particularly in electrode materials, device architectures, and application domains—a number of 

persistent challenges continue to constrain their widespread adoption and integration into next-

generation energy systems. Addressing these technical, economic, and scalability-related limitations 

will be crucial for unlocking the full potential of SCs across diverse sectors. 

▪ Balancing Energy and Power Density 

One of the most fundamental challenges in supercapacitor development lies in overcoming the trade-

off between energy density and power density. SCs are inherently designed for rapid energy delivery, 

enabling them to achieve power densities significantly higher than traditional batteries. However, this 

advantage comes at the expense of energy density, which remains markedly lower. While conventional 

batteries can store large quantities of energy for prolonged discharge, SCs typically offer only short-

term energy supply. Bridging this performance gap without sacrificing the rapid charge–discharge 

capabilities of SCs is a key area of ongoing research. Hybrid devices, which combine electric double-

layer capacitance (EDLC) with pseudocapacitance, offer a promising pathway to enhance energy 

density. However, these hybrids often face challenges related to structural complexity, reduced cycle 

life, and increased internal resistance, necessitating careful design optimization. 

▪ Improving Cycle Life and Mechanical Stability 

Although SCs generally exhibit superior cycle life compared to batteries—often exceeding hundreds 

of thousands of cycles—certain materials and designs, particularly those involving pseudocapacitive or 

hybrid electrodes, can suffer from degradation over extended use. Repeated ion intercalation, structural 

strain, and electrochemical instability can lead to loss of capacitance, increased internal resistance, and 

mechanical failure. These issues are particularly critical in flexible and wearable SCs, where mechanical 

deformation adds another layer of complexity. Strategies such as surface modification, nanostructuring, 

and the incorporation of flexible binders and substrates have shown potential to enhance mechanical 

integrity and electrochemical durability. Nevertheless, developing robust, long-life SCs that can 

perform reliably under dynamic operating and environmental conditions remains a major technical 

hurdle. 

▪ Scaling Up Low-Cost and Sustainable Material Production 

The development of advanced electrode and electrolyte materials—such as graphene, carbon 

nanotubes, transition metal oxides, and ionic liquids—has dramatically improved SC performance in 

laboratory settings. However, the scalability and economic viability of these materials remain 

questionable. High costs, complex synthesis processes, and limited resource availability often prevent 

their commercialization at a meaningful scale. Moreover, environmentally friendly production 

techniques are still under development. The shift toward biomass-derived carbons, green chemistry, 

and low-temperature, solvent-free synthesis methods offer a more sustainable pathway, but further 
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optimization is required to ensure consistent material quality, electrochemical performance, and supply 

chain feasibility.  

B. Future Perspectives 

To overcome these challenges, future research should be directed toward several key areas: 

▪ Development of Multi-functional Hybrid Materials 

Designing electrodes that combine EDLC and pseudocapacitive behavior in a controlled and stable 

manner can significantly boost energy and power densities. Material interfaces must be engineered to 

minimize resistance and degradation while maximizing charge storage capacity. 

▪ AI-Assisted Materials Discovery and Device Optimization 

Machine learning (ML) and artificial intelligence (AI) are emerging as powerful tools for accelerating 

the discovery of novel materials, predicting performance, and optimizing device parameters. AI-driven 

simulations can reduce experimental costs and identify optimal material combinations and operating 

conditions. 

▪ Integration into Hybrid Energy Systems 

SCs should be increasingly considered as part of hybrid energy storage systems, working in tandem 

with batteries or fuel cells to combine high energy density with fast power delivery. Such integration 

can support applications in electric vehicles, smart grids, aerospace systems, and remote energy 

management. 

▪ Advancement of Solid-State and Flexible Architectures 

The development of solid-state SCs and flexible/wearable configurations will open up new 

possibilities in biomedical devices, wearable electronics, and IoT applications. These formats require 

further innovation in electrolyte materials, substrate design, and encapsulation techniques. 

▪ Standardization and Commercial Scaling 

Efforts must be made to bridge the gap between academic innovation and industrial practice through 

standardized testing protocols, long-term reliability studies, and cost-performance benchmarking. 

In summary, while supercapacitors have established themselves as critical components in modern 

energy storage ecosystems, addressing their current limitations through interdisciplinary research and 

engineering innovation will be vital to achieving their full potential. With targeted efforts in material 

design, system integration, and sustainable manufacturing, SCs are poised to become a cornerstone 

technology in the global transition to resilient, high-efficiency, and low-carbon energy solutions. 

7. Conclusions 

Materials play a pivotal role in shaping the performance, longevity, and adaptability of 

supercapacitors in modern energy systems. Recent developments in electrode design—ranging from 

porous carbon-based materials to pseudocapacitive metal oxides and conductive polymers—have 

significantly improved energy storage capabilities. Advances in electrolyte chemistry and separator 

engineering have further enhanced the charge–discharge dynamics and operating voltage of SCs. 

Emerging technologies, such as flexible, solid-state, and biomass-derived SCs, are expanding the scope 

of applications while promoting environmental sustainability. Despite these achievements, challenges 

persist in balancing energy and power density, ensuring long-term mechanical and electrochemical 

stability, and scaling up the production of high-performance materials at low cost. Looking forward, 

interdisciplinary approaches that combine materials science, nanotechnology, and artificial intelligence 

are expected to accelerate the development of next-generation supercapacitors. These innovations will 

not only meet the growing demands for efficient energy storage but also drive the transition toward 

greener and more resilient energy infrastructures. 
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