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Abstract:  This paper indicates a comprehensive evaluation of the impact of electric vehicle (EV) charging on 

power quality parameters within contemporary electrical distribution networks, with a particular focus on 

transient behaviors and system stability under varying levels of EV penetration. Leveraging the IEEE 33-bus radial 

distribution system as a benchmark model, the study employs time-domain ETAP simulations to analyze load flow 

dynamics, voltage profile variations, and power loss distributions. A comparative investigation is conducted 

between scenarios with and without the integration of photovoltaic (PV) systems, further augmented by the 

implementation of Battery Management Systems (BMS) to enable dynamic load control and grid support. The 

simulation results reveal that the coordinated integration of PV and BMS significantly mitigates voltage deviations, 

reduces system losses, and enhances grid stability, particularly during peak demand periods. These findings 

underscore the pivotal role of distributed energy resources (DERs) and advanced energy management strategies in 

facilitating a resilient and sustainable EV charging infrastructure, which is indispensable for accommodating the 

anticipated growth in EV adoption. 

Keywords: Electric Vehicle (EV) Charging; Grid Stability; Photovoltaic (PV) Systems; Battery Management System 

(BMS); Power Quality Metrics. 

1. Introduction  

Electric vehicle (EV) sales continue to exhibit robust growth, with projections indicating that global 

sales could reach approximately 17 million units in 2024, representing more than one in five vehicles 

sold worldwide. EVs are steadily advancing toward mass-market acceptance across an increasing 

number of countries, signaling a pivotal shift in the global automotive landscape. Although challenges 

such as tightening profit margins, volatile battery material prices, elevated inflation rates, and the 

gradual phase-out of purchase incentives in certain regions have raised concerns regarding the sector’s 

growth trajectory, global sales data remain resilient [1-3]. During the first quarter of 2024, electric car 

sales recorded an approximate 25% increase compared to the same period in 2023, maintaining a 

consistent year-on-year growth trend observed since 2022. Market projections for 2024 suggest that 

electric vehicles could attain a market share of up to 45% in China, 25% in Europe, and over 11% in the 

United States [3,4], supported by intensifying competition among manufacturers, continued declines in 

battery and vehicle costs, and sustained policy interventions aimed at promoting the adoption of zero-

emission vehicles.  

As electric vehicle (EV) markets continue to expand rapidly, the necessity for an equally robust and 

accessible public charging infrastructure becomes increasingly critical. While the majority of EV 
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charging currently occurs at residential and workplace locations, evolving consumer expectations are 

poised to demand equivalent levels of convenience, autonomy, and service quality for EVs as 

traditionally experienced with internal combustion engine vehicles. This transition underscores the 

imperative for widespread, reliable, and efficient public charging networks. By the end of 2021, the 

number of publicly accessible charging points worldwide had approached approximately 1.8 million 

units, with fast chargers comprising nearly one-third of this total. Notably, approximately 500,000 

public chargers were installed in 2021 alone—a figure exceeding the cumulative total available in 2017—

reflecting a significant acceleration in deployment efforts [4-6]. However, despite these advances, the 

growth rate of publicly accessible chargers decelerated to 37% in 2021, a decrease from 45% in 2020 and 

markedly lower than the average annual growth rate of nearly 50% recorded between 2015 and 2019. 

Within this expansion, fast charger installations increased by 48% in 2021, marginally higher than the 

43% growth observed in 2020, whereas the deployment rate of slow chargers exhibited a pronounced 

slowdown, growing by only 33% compared to 46% the previous year [7-10]. These trends highlight both 

the significant progress achieved and the emerging challenges facing the EV ecosystem, particularly the 

need to sustain and accelerate the deployment of high-capacity, publicly accessible charging 

infrastructure to meet future demand and support the continued electrification of the transportation 

sector. 

Power quality (PQ) has become a central concern in modern electrical grids, particularly as the 

integration of distributed energy resources (DERs), electric vehicles (EVs), and advanced power 

electronic devices continues to transform traditional grid operations [11-16]. Maintaining high 

standards of power quality is essential to ensuring grid reliability, efficiency, and stability in the face of 

increasingly dynamic and decentralized energy flows. Key PQ metrics include voltage profile stability, 

frequency stability, harmonic distortion, power factor, system losses, voltage unbalance, and event-

driven reliability indicators. Voltage stability is critical to prevent equipment malfunctions and 

degradation [17-20], while frequency stability ensures system synchronism, especially under fluctuating 

renewable and EV loads. Harmonic distortion, caused by non-linear devices such as EV chargers and 

inverters, can lead to increased losses and equipment damage, making Total Harmonic Distortion 

(THD) a vital metric. Managing the power factor and reactive power is crucial for maintaining 

transmission efficiency and supporting voltage regulation, particularly as EV chargers impact network 

dynamics [21-24].  

Additionally, minimizing system losses is essential to preserving network efficiency, with EV load 

concentrations potentially exacerbating feeder losses if not properly coordinated. Voltage unbalance, 

often resulting from uneven single-phase loads, can reduce three-phase equipment efficiency and 

lifespan. Thus, event-driven metrics such as the System Average Interruption Duration Index (SAIDI) 

and System Average Interruption Frequency Index (SAIFI) provide important measures of overall grid 

reliability [25-28]. In sum, the evolving landscape of electrification demands advanced monitoring 

systems, adaptive protection schemes, real-time control algorithms, and strategic DER and EV 

integration to uphold and enhance power quality across modern distribution networks. To provide a 

structured overview of the current state of research in this domain, Table 1 summarizes recent key 

studies that have examined the influence of EV charging patterns on power quality metrics in modern 

electrical grids. The table highlights the major findings of each contribution, offering valuable insights 

into the evolution of research approaches. 

 
Table 1. summarizes recent key studies that have examined the influence of EV charging patterns on power 

quality metrics in modern electrical grids. 

Ref. Year EV findings 

[29] 2025 √ ▪ This study develops a stochastic EV modeling framework that captures the 

inherent uncertainties in EV charging behaviors, including variations in travel 

distances, arrival and departure times, and individual charging requirements. 

▪ Stochastic processes, particularly Monte Carlo simulation techniques, are 

utilized to realistically model diverse real-world EV charging scenarios. A 



  

Mohamed et al., 2025 IJEES 
 

 

 

 

  Page | 33 

 

backward–forward sweep load flow algorithm is then applied to assess the 

impact of these stochastic charging patterns on grid performance. 

▪ Simulations reveal that uncontrolled EV charging, especially during peak 

hours and in areas with constrained grid capacity, can severely exacerbate grid 

stress. Comparisons with deterministic modeling underscore the necessity of 

coordinated and intelligent EV charging strategies to maintain grid resilience. 

[30] 2025 √ ▪ The study introduces a hybrid optimization approach, combining the 

Dollmaker Optimization Algorithm (DOA) and Contrastive Hypergraph 

Neural Network (CHGNN), referred to as the DOA-CHGNN technique, for 

optimizing the placement of Electric Vehicle Charging Stations (EVCS) with 

integrated Photovoltaic-Battery Energy Storage Systems (PV-BESS) in DC 

grids. 

▪ The primary aim of the proposed strategy is to minimize voltage drops and 

THD while maximizing overall system efficiency; DOA is employed to 

optimize EVCS placement, while CHGNN is used to accurately predict 

dynamic EV load profiles. 

▪ Simulation results, conducted within the MATLAB environment, demonstrate 

that the proposed DOA-CHGNN method achieves superior performance 

metrics—specifically, a THD of 0.9%, a total system cost of $5,520,000, an 

execution time of 0.41 seconds, and an efficiency of 98%—compared to other 

optimization methods like Jellyfish Search Algorithm (JSA), Hybridized 

Whale Particle Swarm Optimization (HWPSO), and Deep Neural Networks 

(DNN). 

[31] 2025 √ ▪ The study presents an artificial intelligence (AI)-integrated optimal charging 

framework designed to facilitate fast EV charging while alleviating grid stress 

by smoothing the "duck curve," effectively managing dynamic charging 

demands. 

▪ Data collected from Caltech’s Adaptive Charging Network (ACN) at NASA’s 

Jet Propulsion Laboratory (JPL) site were categorized into daytime and 

nighttime patterns. Charging duration predictions were based on features 

such as start charging time and requested energy, enabling intelligent 

scheduling through AI-driven optimization strategies. 

▪ The proposed AI-based strategy was evaluated under scenarios involving the 

integration of 1.5 million, 3 million, and 5 million EVs, demonstrating that 

without any control strategies, peak loads rise significantly (from around 

22,000 MW without EVs to 35,000 MW with 5 million EVs). The 

implementation of the AI-driven optimization reduced peak demand by 

approximately 16% for 1.5 million EVs, 21.43% for 3 million EVs, and 34.29% 

for 5 million EVs. 

[32] 2025 √ ▪ To address this gap, the study proposes a procedure to estimate future power 

demand patterns for public car parks under a 2030 scenario, utilizing real-

world data collected from various car parks across Italy. 

▪ Monte Carlo simulations are employed to generate probabilistic daily power 

demand curves across different maximum charging power levels, ranging 

from 7.4 kW to ultra-fast charging, thus capturing the stochastic nature of EV 

charging behaviors. 

▪ Results reveal substantial variability in power demand patterns depending on 

the type and location of car parks. City center car parks peak in the morning, 

while railway station and hospital car parks follow transportation and 

healthcare-related demand profiles. Business area car parks show a strong 

weekday demand concentration. Furthermore, ultra-fast charging can escalate 

peak grid demand by up to 210%. 

 

     In this context, Khan [33] conducts a detailed investigation into the impacts of large-scale electric 

vehicle (EV) penetration on low-voltage distribution networks, with particular emphasis on the 
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influence of charging times, charging methods, and EV operational characteristics. The study examines 

several charging scenarios to assess the effects of EV integration on key grid performance indicators, 

including power demand, voltage profiles, power quality, and overall system adequacy. A lookup-

table-based charging strategy is proposed to facilitate a systematic analysis of large-scale EV 

deployment impacts. The results reveal that both bus voltages and line currents experience significant 

deviations during periods of intensive EV charging and discharging. Specifically, residential grid 

voltage sag increases were observed, ranging approximately from 1.96% to 1.77%, 2.21%, 1.96% to 

1.521%, and 1.93% across four distinct EV charging profiles. The findings of this study provide valuable 

insights that can be utilized in the development of optimized EV charging and discharging strategies 

aimed at minimizing adverse effects on voltage stability and line current performance within 

distribution networks. Several studies [34-36] critically examined the challenges associated with the 

integration of electric vehicles (EVs) into electrical networks and evaluates strategies for their effective 

mitigation. The research demonstrates that through the implementation of coordinated and synergistic 

operating strategies, combined with the deployment of advanced technologies and intelligent control 

systems, the adverse impacts of large-scale EV integration on grid stability and power quality can be 

significantly alleviated. The development and widespread adoption of these strategic frameworks and 

technological innovations are pivotal to ensuring the reliability and quality of power supply as EV 

penetration continues to surge.  

In this direction, the rapid proliferation of electric vehicles (EVs) presents both unprecedented 

opportunities and significant challenges for modern electrical distribution networks. As EV adoption 

accelerates, the associated charging demand introduces new complexities in grid operation, particularly 

affecting power quality metrics such as voltage stability, frequency regulation, and system losses. 

Unlike traditional load profiles, EV charging patterns are inherently stochastic, characterized by high 

variability in time, location, and intensity, thereby imposing dynamic and often unpredictable stresses 

on existing infrastructure. This study focuses on evaluating the influence of EV charging behaviors on 

the performance of electrical grids, with particular emphasis on key power quality indicators under 

varying penetration levels. Using the IEEE 33-bus radial distribution system as a representative model, 

detailed simulations are conducted to assess load flow variations, voltage deviations, and energy losses 

arising from different EV integration scenarios. Furthermore, the analysis explores the effectiveness of 

incorporating distributed energy resources (DERs)—specifically photovoltaic (PV) systems and Battery 

Management Systems (BMS)—in mitigating adverse impacts and enhancing overall grid resilience. 

Through systematically investigating the interplay between EV charging patterns and power quality 

outcomes, this research aims to provide critical insights into the operational challenges and strategic 

solutions necessary for developing robust, adaptive, and sustainable grid architectures capable of 

supporting the future electric mobility landscape. 

2. Modeling EV Charging Impact Using IEEE 33-Bus System 

This study investigates the impact of electric vehicle (EV) charging on the performance of an IEEE 

33-bus distribution network. The study employs a combination of data-driven modeling and power 

system simulation techniques to analyze the network’s behavior under varying EV penetration levels. 

A. Data Collection and Preparation: 

i. Load Profile: A 24-hour load profile for the IEEE 33- bus system was obtained from [Source of 

Load Profile Data]. This profile represents the typical daily load demand on the network, 

including variations in residential, commercial, and industrial loads. 

ii. Electrical Vehicle Profile: An EV charging profile was developed based on [source of EV charging 

data or methodology for creating profile]. This profile incorporates factors such as:  

- EV Penetration Level: The number of EVs connected to the grid at different times of the day. 

- Charging Behavior: Charging times, charging rates, and state-of-charge (SoC) requirements of 

EVs. 

- Charging Station Locations: The locations of EV charging stations within the 33-bus system.  
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- Data Format: Both the load profile and EV profile were prepared in CSV format for easy 

integration into the simulation software. 

B. ETAP-Based Transient Load Flow and Dynamic Analysis 

-  ETAP Software: The study utilizes the Electrical Transient Analysis Program (ETAP) software for 

power system simulation. ETAP provides a comprehensive platform for modeling and 

analyzing power systems, including load flow analysis, short-circuit analysis, and transient 

stability studies. 

-  Model Development: The IEEE 33-bus test system was modeled in ETAP, including all 

components such as generators, transformers, lines, and loads. The load profile and EV profile 

were imported into the model to simulate the impact of EV charging on the network.  

C. Time-Domain Load Flow Analysis  

- Simulation Parameters: The time-domain load flow analysis was performed over a 24-hour period 

with a suitable time step to capture the dynamic behavior of the system. 

- Performance metrics: 

▪ Voltage Profile: The voltage at each bus in the system was monitored throughout the 

simulation period to assess voltage deviations and potential voltage violations.  

▪ Electrical Losses: Power losses within the network were calculated to evaluate the impact of 

EV charging on system efficiency 

▪ Voltage Drop: Voltage drop across each line segment was analyzed to identify potential 

bottlenecks and areas of concern. 

D. Data Analysis and Results 

i. Data Extraction: Simulation results, including voltage profiles, electrical losses, and voltage drop 

data, were extracted from ETAP and processed for analysis. 

ii. Visualization: The results were visualized using appropriate graphical tools, such as line charts, 

bar charts, and heatmaps, to effectively present the findings. 

iii. Analysis: The impact of EV penetration levels on system performance was analyzed, with 

particular focus on: 

▪ The magnitude and duration of voltage deviations. 

▪ The distribution of electrical losses within the network. 

▪ The identification of critical areas with significant voltage drops. 

     Thus, this study investigated the impact of electric vehicle (EV) charging on the IEEE 33-bus 

distribution network using data-driven modeling and ETAP-based dynamic simulations. A 24-hour 

load profile and EV charging behavior model were developed to capture real-world system dynamics, 

including variations in load demand and EV penetration levels. Through time-domain load flow 

analysis, key performance indicators—such as voltage profiles, power losses, and voltage drops—were 

assessed. The results revealed that increased EV charging demand leads to higher voltage deviations 

and system losses, particularly around clustered charging station locations. However, the integration of 

photovoltaic (PV) systems and Battery Management Systems (BMS) significantly improved voltage 

stability and reduced losses. The findings highlight the need for optimized EV charging strategies, 

demand-side management, and intelligent control frameworks to maintain grid resilience and 

operational efficiency in the context of growing EV adoption. 

3. Results and Dissections  

     The Results and Discussion section comprehensively examines the IEEE 33-bus test system topology, 

with a particular emphasis on evaluating grid performance under two distinct scenarios: with and 

without the integration of photovoltaic (PV) systems. This assessment aims to elucidate the impacts of 

PV deployment on the operational characteristics, reliability, and efficiency of the distribution network. 

A. IEEE 33-BUS TEST SYSTEM TOPOLOGY 

     Figure 1 illustrates the IEEE 33-bus radial distribution test system, a benchmark model extensively 

employed for the evaluation of power flow algorithms and the development of distributed energy 

resource (DER) integration strategies. The topology comprises 33 buses (designated as B1 to B33) 
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interconnected by distribution lines (L1 to L33), forming a medium-voltage network characterized by 

its radial structure and absence of closed loops. Each bus is associated with electrical loads that simulate 

residential, commercial, and industrial energy consumption profiles. Notably, specific buses such as 

B18 and B33 exhibit higher load concentrations and are situated at greater electrical distances from the 

substation, rendering them more susceptible to voltage drops. In the present study, the IEEE 33-bus test 

system serves as a foundational model for assessing the integration of electric vehicle (EV) charging 

stations at buses B20, B28, and B11, alongside photovoltaic (PV) systems deployed at buses B22, B33, 

and B11. The analysis focuses on the impacts of these integrations on power losses and voltage profiles 

under varying load conditions. 

 
Figure 1. IEEE 33-bus radial distribution test system. 

 

  Figure 2 depicts the proposed analytical framework designed to demonstrate and implement 

voltage profile assessment under varying levels of electric vehicle (EV) penetration, providing a 

comprehensive technical analysis of the dynamic characteristics of the IEEE 33-bus distribution 

system. Within this framework, a detailed model of a 4 MW grid-following inverter-based 

photovoltaic (PV) system is incorporated to facilitate time-domain load flow simulations 

conducted over a 24-hour period, thereby capturing the system’s dynamic operational behavior. 

The framework integrates a 24-hour load profile with corresponding EV charging patterns, 

accounting for temporal variations in residential, commercial, and industrial loads as well as the 

diverse charging behaviors of EVs under different scenarios, including varying penetration rates 

and charging schedules. This approach enables a systematic evaluation of the IEEE 33-bus 

distribution network’s performance, particularly in terms of voltage stability and load 

management, under dynamic EV integration conditions.  
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Figure 2. Framework of Proposed Scheme. 

B.  Assessing Grid Performance with And Without PV Integration 

i. Without PV 

     Figure 3 presents the distribution of grid power losses over a 24-hour period, with particular 

emphasis on the influence of increasing electric vehicle (EV) loads on feeder loss characteristics. The 

analysis reveals a marked escalation in peak demand between 5:00 AM and 9:00 AM, predominantly 

driven by the operation of EV charging stations under Grid-to-Vehicle (G2V) mode, which substantially 

amplifies line losses, particularly along extended feeder sections. In contrast, the deployment of Vehicle-

to-Grid (V2G) strategies commencing at 7:00 PM enables power redistribution across the network, 

contributing to a notable reduction in overall system losses.  

 

 
Figure 3. Grid Loss Distribution Over a 24-hour Period. 
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     The power loss profile depicted in Figure 3 underscores the imperative of optimizing EV charging 

schedules and integrating distributed generation resources to improve network efficiency and 

reliability. Figures 4 and 5 respectively depict the EV charging demand curve and its subsequent 

impacts on voltage profiles and voltage drops across the distribution network. Furthermore, Figure 6 

illustrates the variability of daily EV charging patterns, which are predominantly shaped by user 

behavior and state-of-charge (SoC) requirements. The transient responses to dynamic EV load 

fluctuations are evaluated through ETAP-based simulations, with voltage profiles captured at discrete 

time intervals. These profiles reveal the system's dynamic behavior under varying load conditions, 

facilitating the identification of critical buses where voltage thresholds may be violated, thus 

necessitating the activation of protective schemes to maintain network integrity. 
 

 
Figure 4. Gird Bus Voltage Profile without PV and BMS System. 

 

 
Figure 5. Gird Bus Voltage Drop without PV and BMS System. 

 

     These transient vulnerabilities may result in delayed protection system responses, thereby 

underscoring the necessity for advancements in adaptive relay coordination and settings. As observed 

in Figure 6, significant evening charging peaks originating from the three charging stations—CS1, CS2, 

and CS3—are evident, typically coinciding with the return of users to their residences and the 



  

Mohamed et al., 2025 IJEES 
 

 

 

 

  Page | 39 

 

subsequent connection of their electric vehicles (EVs) to the grid. This behavior induces substantial load 

spikes and pronounced voltage depressions, predominantly due to the operation of the Grid-to-Vehicle 

(G2V) mode at these stations. 

     Moreover, off-peak periods beginning at approximately 2:00 AM exhibit markedly reduced demand 

levels, particularly at buses B20, B28, and B11, where vehicles continue to operate under G2V mode 

within an extended eight-hour charging window, as illustrated in Figure 7 through the corresponding 

grid power loss profiles. This decline in system load during off-peak hours presents a strategic 

opportunity for the implementation of load-shifting techniques aimed at enhancing system efficiency. 

The occurrence of pronounced load peaks further highlights the critical importance of implementing 

demand-side management (DSM) initiatives and introducing time-of-use (ToU) tariff structures to 

incentivize charging during off-peak intervals. Additionally, the deployment of advanced Battery 

Management System (BMS) strategies can play a pivotal role in mitigating demand variability, thereby 

contributing to improved voltage stability and overall grid resilience during peak load periods. 

i. With PV 

     A comparative analysis is conducted between scenarios with and without photovoltaic (PV) system 

integration to evaluate improvements in voltage support and reductions in power losses. Battery 

Management Systems (BMS) were implemented for six PV system batteries—two batteries at each of 

the nodes B22, B33, and B18—establishing a coordinated Grid Support Mechanism. Under this 

framework, PV inverters dynamically regulate their output in response to real-time variations in solar 

irradiance and grid demand, while continuous voltage monitoring at the battery-associated buses 

facilitates effective mitigation of power loss issues. As illustrated in Figure 7, the integration of PV 

systems yields a significant reduction in voltage deviations and feeder losses, particularly at critical 

nodes, during periods when EV charging stations located at B28, B20, and B11 operate under Grid-to-

Vehicle (G2V) mode, specifically between 5:00 AM and 2:00 PM. The BMS configuration, in conjunction 

with real-time voltage measurements, enables dynamic switching between charging and discharging 

states of the batteries. As shown in Figure 8, when the voltage at the battery buses exceeds 98.5% of the 

nominal value, the BMS triggers a transition to the charging state, thereby enabling the batteries to 

contribute active power to the grid, enhancing system voltage stability and reducing dependency on 

centralized generation. 

 

 
Figure 6. Load Profile of Three Charging Stations in The Grid without PV and BMS System. 
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Figure 7. Power losses in the grid. 

 

 
Figure 8. Gird Bus Voltage Profile with PV and BMS System. 

 

     Conversely, when the voltage at the battery buses falls below 97.8% of the nominal value, the Battery 

Management System (BMS) initiates a transition to the discharging state, permitting the batteries to 

draw active power from the grid to maintain operational equilibrium. The deployment of the Dynamic 

BMS strategy further enhances the stability of voltage profiles, underscoring the critical role of smart 

inverter technologies in modern distribution networks. Figure 9 illustrates the variations in active 

power profiles across the IEEE 33-bus system over a 24-hour simulation period encompassing electric 

vehicle (EV) charging activities. The proposed BMS framework effectively manages excess power 

absorption during peak demand periods and provides reactive power support during voltage sag 

events, thereby reinforcing system resilience. Moreover, the coordinated switching strategy between 

Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) operational modes, as detailed in Figure 10, facilitates 

the bidirectional flow of power between EV batteries and the grid. This dynamic interaction, contingent 

upon the state of charge and operational conditions of the EV batteries, significantly contributes to the 

stabilization of both active and reactive power within the network. Additionally, the strategic 

optimization of EV charging station placement emerges as a vital consideration for achieving a more 

balanced load distribution across the distribution system, thereby enhancing overall grid performance 

and mitigating localized congestion. 

     In the absence of photovoltaic (PV) system support, power losses tend to escalate during periods of 

elevated electric vehicle (EV) charging demand, thereby exacerbating inefficiencies, particularly along 

extended feeder systems. However, the integration of PV generation, combined with the operational 
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control provided by the Battery Management System (BMS), results in a substantial reduction in these 

losses, especially during daylight hours, owing to localized energy production and the consequent 

minimization of power transfer distances. The performance of the PV systems is inherently modulated 

by temporal variations in solar irradiance, as illustrated in Figure 11. These fluctuations necessitate the 

precise and adaptive operation of the BMS, which assumes a pivotal role in sustaining optimal state-of-

charge (SoC) thresholds within the PV battery banks. Through dynamic management strategies, the 

BMS ensures efficient charging processes while simultaneously safeguarding the battery systems 

against overcharging and deep discharge conditions. Consequently, the energy performance outcomes 

for the PV battery banks are significantly enhanced, contributing to improved grid stability and 

reliability. 

 

 
Figure 9. PV Battery Bus Voltage Profile with PV and BMS System. 

 

 
Figure 10. Load Profile of Three Charging Stations in The Grid without PV and BMS System. 
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Figure 11. Irradiance Profile for 24-Hour Period. 

 

     The voltage profile results obtained through ETAP simulations, as depicted in Figure 12, substantiate 

the rationale for implementing the BMS-driven grid support mechanism within time-domain load flow 

analyses to enhance transient voltage stability. Moreover, the dynamic interaction between the BMS and 

PV inverters emerges as a critical factor in optimizing the distribution of reactive power across the 

network.  

 

 
Figure 12. Voltage Drop Profile of Different Buses in The Grid with PV and BMS System. 

      

     This coordinated operation is exemplified by the effective load balancing achieved during peak 

demand periods, facilitated through the strategic discharge of EV batteries back into the grid. Further 

insights are provided in Figure 13, which presents the state-of-charge (SoC) profile of one of the PV 

battery systems as managed through BMS control inputs, demonstrating the system’s responsiveness 

to dynamic grid conditions. 
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Figure 13. State of Charge of One of PV battery systems Based on BMS Inputs. 

4. Conclusion 

     This study systematically evaluates the critical role of electric vehicle (EV) charging behavior in 

influencing grid stability, operational performance, and overall system efficiency. Through detailed 

simulation scenarios conducted on the IEEE 33-bus distribution system, the results clearly demonstrate 

that the strategic integration of photovoltaic (PV) systems, coupled with Battery Management Systems 

(BMS), significantly mitigates voltage sag phenomena, reduces active power losses, and promotes a 

more balanced load distribution across the network. These enhancements are particularly vital in the 

context of increasing EV penetration, where heightened and irregular charging demand places 

substantial strain on conventional distribution infrastructures. The findings highlight that PV 

generation, when synchronized with dynamic BMS strategies, not only provides localized support to 

mitigate transient voltage disturbances but also alleviates the burden on upstream network elements by 

reducing power transfer distances. The BMS’s voltage-responsive operational framework ensures 

adaptive control over battery charging and discharging processes, thereby enabling real-time voltage 

regulation and contributing to the grid’s dynamic resilience against fluctuating demand and generation 

patterns.  Given the promising outcomes observed, future research should intensively focus on the 

development of advanced optimization techniques for BMS configuration, particularly multi-objective 

strategies that balance SoC preservation, grid support, and lifecycle extension of storage assets. 

Additionally, the deployment of intelligent enabling algorithms for demand-side management (DSM)—

such as real-time load forecasting, predictive EV charging scheduling, and adaptive time-of-use tariff 

systems—will be pivotal in further enhancing grid reliability, operational efficiency, and economic 

viability in high-EV, high-renewable penetration scenarios. Moreover, expanding the scope to include 

stochastic modeling of EV user behavior, solar irradiance variability, and network contingencies would 

provide a more holistic framework for designing robust, scalable solutions for future smart grids. 
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