
IJEES

International Journal of Electrical Engineering and Sustainability (IJEES)

ISSN (online): 2959-9229 https://ijees.org/index.php/ijees/index

Volume 3 | Number 3 | July-September 2025 | Pages 48-61

Article

Advancing Power Quality in Distribution Grids through AI: Opportunities, Challenges, optimization, and Policy Pathways

Ibrahem Abdaldaem^{1*}, Badr Alskekh², Zidan Mady³

1,2,3 Department of Electric and Electronic Engineering, Higher Institue of Science and Technology, Aljufra ,Sukna Libya

*Corresponding author: Ibrahemyami84@gmail.com

Received: July 5, 2025 Accepted: August 27, 2025 Published: September 04, 2025

This is an open access article under the BY-CC license

Abstract:

The rapid evolution of modern distribution grids toward digital, decentralized, and intelligent systems has elevated the importance of Power Quality (PQ) as a fundamental determinant of grid reliability, efficiency, and stability. This article explores how Artificial Intelligence (AI) is revolutionizing PQ management through intelligent monitoring, predictive analytics, and optimization techniques. The article begins by outlining the critical aspects of PQ disturbances, such as voltage sags, harmonics, and flickers, and their growing complexity due to the integration of renewable energy resources, electric vehicles, and nonlinear loads. It then examines the role of Distributed Flexible AC Transmission System (D-FACTS) devices, including Dynamic Voltage Restorers (DVRs) and Distribution STATCOMs (D-STATCOMs), as essential tools for maintaining PQ stability. Furthermore, the article discusses AI's transformative role in automating event detection, classification, and corrective control using data-driven models and real-time optimization algorithms. The article highlights key opportunities, such as predictive PQ management and self-healing grids, alongside challenges like data privacy, cybersecurity, and regulatory constraints. Finally, the article emphasizes the necessity of robust policy implementation, covering AI governance, standardization, and ethical compliance, to ensure safe, transparent, and sustainable deployment of AI technologies in PQ enhancement.

Keywords: Advancing Power Quality, Distribution Grids, Artificial Intelligent, Opportunities, Challenges, Optimization, Policy.

1. Introduction

The evolution of electrical distribution grids into intelligent, cyber–physical ecosystems has redefined the operational paradigm of modern power systems. Within this transformation, Artificial Intelligence (AI) has emerged as a pivotal enabler of advanced power quality (PQ) management, facilitating the transition from conventional rule-based control to data-driven intelligence [1,2]. PQ, a critical determinant of grid reliability and end-user satisfaction, is increasingly challenged by the proliferation of renewable energy sources, distributed generation, electric vehicles, and nonlinear power-electronic devices [3,4]. These elements, while indispensable to the decarbonization agenda, introduce unprecedented voltage fluctuations, harmonic distortions, and frequency instabilities that traditional analytical methods struggle to mitigate effectively [5,6]. In this context, the deployment of Distributed Flexible AC Transmission System (D-FACTS) devices, such as the Dynamic Voltage Restorer (DVR), Distribution Static Synchronous Compensator (D-STATCOM), and Unified Power

Quality Conditioner (UPQC), has emerged as an effective solution to mitigate PQ disturbances at the distribution level [7-10].

AI-driven techniques offer a revolutionary framework for addressing such challenges. Through the application of machine learning, deep learning, and reinforcement learning, AI can autonomously recognize complex PQ patterns, predict disturbances before they manifest, and optimize corrective control actions in real time [11]. By leveraging massive datasets from smart meters, phasor measurement units (PMUs), and Internet of Things (IoT)-enabled sensors, AI systems enable dynamic decision-making, adaptive reconfiguration, and self-healing capabilities that substantially elevate grid resilience and operational efficiency [12]. The convergence of AI with PQ management thus embodies the shift toward proactive rather than reactive grid supervision. However, the integration of AI into PQ frameworks also introduces new complexities [13]. Issues such as algorithmic transparency, data privacy, model interpretability, and cyber vulnerability pose significant barriers to large-scale deployment. Furthermore, the reliance on high-quality data and the absence of standardized benchmarks for AI-based PQ assessment underscore the need for regulatory, ethical, and technical harmonization [14].

The application of AI in enhancing PQ within distribution grids has become an active area of research, driven by the increasing penetration of renewable energy sources, and nonlinear loads that introduce complex PQ disturbances [15]. Early studies focused on traditional machine learning methods such as Support Vector Machines (SVM), Decision Trees (DT), and Artificial Neural Networks (ANN) for PQ event classification and detection [16]. Zhang et al., [17] demonstrated the effectiveness of SVM in short-term PQ forecasting, achieving high accuracy in identifying voltage sags and harmonic distortions. In [18], the study developed a noise model–based v-support vector regression approach that improved forecasting precision under uncertain grid conditions. These methods laid the foundation for data-driven PQ analysis, enabling utilities to detect and classify disturbances with higher reliability compared to rule-based techniques [19,20].

This study makes several significant contributions to the field of power quality (PQ) management in modern distribution grids through the lens of Artificial Intelligence (AI):

A. Comprehensive Integration of AI and PQ Concepts:

The paper provides a holistic framework linking AI methodologies, such as machine learning, predictive analytics, and optimization—with PQ enhancement strategies, offering a unified perspective on how AI can address the complexities of modern grid disturbances.

B. Evaluation of D-FACTS Devices in AI-Based PQ Control:

It contributes to the technical understanding of how Distributed Flexible AC Transmission System (D-FACTS) devices, including DVRs and D-STATCOMs, can be intelligently controlled and optimized through AI algorithms for real-time compensation of voltage sags, harmonics, and flickers.

C. Identification of Emerging Opportunities and Research Directions:

The study highlights new opportunities in predictive PQ management, self-healing grid architectures, and AI-enabled distributed control, paving the way for advanced, data-driven, and resilient grid operations.

D. Critical Assessment of Challenges and Risks:

It addresses key challenges, including data privacy, cybersecurity, model interpretability, and regulatory limitations, thus providing a realistic understanding of the barriers that must be overcome for large-scale AI adoption in PQ management.

E. Policy and Governance Contribution:

Beyond technical insights, the article contributes to the policy discourse by emphasizing the importance of AI governance, standardization, and ethical compliance frameworks. It underscores the role of policy in ensuring safe, transparent, and sustainable implementation of AI technologies in the power sector.

2. Power Quality (PQ)

Power quality (PQ) represents a fundamental aspect of modern electrical power systems, defining the degree to which the voltage, current, and frequency characteristics of the grid conform to established standards [21,22]. In an ideal system, power is delivered as a pure sinusoidal waveform at a constant frequency and amplitude; however, real-world conditions introduce various disturbances that degrade this quality. These disturbances, such as voltage sags, swells, transients, flickers, harmonic distortions, and unbalances as indicated in Figure 1, originate from numerous sources, including nonlinear loads, power-electronic converters, fluctuating renewable generation, and sudden load changes. Poor PQ compromises the operational efficiency and lifespan of sensitive electrical equipment but also results in significant economic losses, system downtime, and reduced reliability of supply [23]. As the complexity and interconnectivity of modern grids increase, maintaining PQ within permissible limits has become an essential engineering and economic challenge.

Figure 1. Power quality issues.

In the context of smart and distributed grids, the significance of PQ has expanded beyond traditional voltage regulation to encompass holistic system stability and sustainability. The proliferation of renewable energy sources such as solar photovoltaics (PV) and wind turbines introduces inherent intermittency and variability, which in turn exacerbate PQ issues [24]. Similarly, the widespread use of electric vehicles (EVs), distributed generation units, and inverter-based resources intensifies harmonic pollution and reactive power imbalances. Consequently, ensuring high PQ now requires advanced monitoring, adaptive control, and predictive maintenance strategies enabled by digitalization and intelligent automation [25]. Emerging technologies such as AI-based analytics, D-FACTS devices, and real-time measurement systems are becoming indispensable tools for diagnosing, forecasting, and mitigating PQ disturbances, thereby supporting the evolution of the grid toward greater efficiency, resilience, and power integrity. Table 1 demonstrates key parameters, causes, and mitigation techniques of PQ issues in electrical grids.

Table 1. Key parameters, causes, and mitigation techniques of PQ issues in electrical grids [26-30].

Power Quality	Description	Primary Causes	Consequences
Parameter / Issue			
Voltage Sag (Dip)	Short-term reduction in RMS	Faults on transmission or	Equipment malfunction,
	voltage (10–90% of nominal)	distribution lines, motor	process interruption, loss of
	lasting from 0.5 to 60 cycles.	starting, large load	data in digital devices.
	Ç ,	switching.	3
Voltage Swell	Temporary increase in RMS	Sudden load disconnection,	Overheating of equipment,
	voltage above nominal (110–	capacitor switching, single-	insulation damage,
	180%) for up to 1 minute.	line faults.	overvoltage tripping.
Harmonic	Deviation of voltage or current	Power-electronic converters,	Overheating of transformers,
Distortion	waveform from pure sinusoidal	variable frequency drives,	increased losses, malfunction
	shape due to nonlinear loads.	EV chargers.	of sensitive electronics.
Voltage Flicker	Visible light intensity fluctuation	Arc furnaces, welding	Consumer discomfort,
	caused by rapid voltage variations.	equipment, fluctuating	reduced equipment life,
	, ,	industrial loads.	lighting instability.
Unbalance	Unequal magnitude or phase shift	Uneven single-phase	Motor vibration,
	between three-phase voltages or	loading, asymmetrical faults.	overheating, reduced
	currents.		efficiency, torque pulsations.

Transients (Spikes	Very short-duration overvoltages	Lightning strikes, switching	Insulation failure, equipment	
/ Surges)	with high amplitude and steep rise	operations, capacitor	damage, data corruption.	
	time.	energization.		
Frequency	Variation from nominal system	Generation-load imbalance,	Generator instability,	
Deviation	frequency (50/60 Hz).	grid disturbances.	malfunction of frequency-	
			sensitive devices.	

Table 1 provides a comprehensive overview of the key PQ disturbances that affect modern electrical grids, highlighting their underlying causes, technical implications, and potential mitigation strategies. It demonstrates that maintaining PQ within acceptable standards is no longer a passive engineering task but a dynamic challenge that demands intelligent, adaptive, and integrated control mechanisms. Issues such as voltage sags, harmonic distortion, and transients compromise equipment reliability but also influence the overall stability and efficiency of power delivery systems. The deployment of advanced mitigation technologies, including D-FACTS devices, active filters, and automated voltage regulation systems, coupled with AI-driven diagnostics and optimization, offers a pathway toward sustainable PQ management.

3. D-FACTS Devices in Distribution Systems

Distributed Flexible AC Transmission System (D-FACTS) devices represent a new generation of power-electronic-based controllers specifically designed to enhance PQ, voltage stability, and reactive power compensation at the distribution level of electrical networks. Unlike conventional centralized FACTS devices used in transmission systems, D-FACTS are compact, modular, and deployed directly on distribution feeders, offering localized control and scalability [31]. Their primary objective is to dynamically regulate voltage, mitigate harmonics, correct power factor, and maintain system balance under varying load and generation conditions, especially in modern grids characterized by high renewable energy penetration, electric vehicle (EV) charging, and nonlinear load behavior.

Key D-FACTS devices include the Distribution Static Compensator (D-STATCOM), Dynamic Voltage Restorer (DVR), and Unified Power Quality Conditioner (UPQC). The D-STATCOM regulates voltage and compensates reactive power by injecting controllable currents into the grid, effectively maintaining voltage levels under dynamic load variations [32]. The DVR focuses on mitigating voltage sags and swells by injecting a series voltage in synchronization with the supply, protecting sensitive loads from PQ disturbances. Meanwhile, the UPQC, combining both series and shunt compensation capabilities, offers comprehensive mitigation of harmonics, voltage variations, and imbalances simultaneously [33].

The implementation of D-FACTS in distribution systems improves PQ but also contributes to loss reduction, enhanced loadability, and greater reliability of the grid. When integrated with AI and advanced control algorithms, such as fuzzy logic, neural networks, or reinforcement learning, these devices can operate autonomously, adapting to real-time disturbances and optimizing performance. Consequently, D-FACTS technologies form a cornerstone of smart grid architecture, enabling resilient, flexible, and efficient distribution networks aligned with the global transition toward sustainable and intelligent energy systems. Table 2 highlights an overview of D-FACTS devices in distribution systems.

Table 2. Overview of D-FACTS Devices in distribution systems [33-36].

D-FACTS	Primary Function	Control Mechanism /	Advantages
Device		Technology	
D-STATCOM	Provides dynamic reactive	Voltage Source Converter	Fast dynamic response,
(Distribution	power compensation,	(VSC) with current control	improves voltage stability,
Static	voltage regulation, and	using PI, fuzzy, or AI-based	reduces flicker and
Compensator)	power factor correction.	controllers.	harmonics.
DVR	Compensates voltage sags,	PWM-based control with	Protects sensitive loads, fast
(Dynamic	swells, and transients by	voltage detection and phase	response to voltage
Voltage	injecting voltage in series	angle synchronization.	disturbances, modular
Restorer)	with supply.		design.

UPQC	Simultaneous compensation	Dual VSC configuration with	Comprehensive PQ
(Unified	of voltage and current-	coordinated control strategies	improvement, harmonics
Power	related PQ problems (sag,	(AI, fuzzy logic, or dq-	mitigation, and dynamic
Quality	swell, harmonics,	reference control).	load balancing.
Conditioner)	unbalance).		
D-SVC	Controls reactive power and	Firing angle control via	Simple design, effective for
(Distribution	voltage magnitude using	thyristor switching and	steady-state voltage
Static Var	thyristor-controlled reactors	feedback loop.	regulation.
Compensator)	and capacitors.		
D-SSSC	Controls line impedance	VSC-based phase angle	Enhances power flow
(Distribution	and power flow through	modulation control.	control and voltage stability;
Static	voltage injection in series		compact design.
Synchronous	with line current.		
Series			
Compensator)			
D-IPFC	Balances power flow and	Coordinated VSC control	Enhances inter-feeder power
(Distribution	improves PQ across	across distribution feeders.	sharing, improves voltage
Interline	multiple feeders.		profile and PQ.
Power Flow	_		_
Controller)			
AF (Active	Eliminates harmonics and	Adaptive current/voltage	Reduces Total Harmonic
Filter)	compensates reactive	tracking using PLL and AI-	Distortion (THD), improves
	power.	assisted control.	waveform quality.

Table 2 provides a structured overview of the major Distributed Flexible AC Transmission System (D-FACTS) devices utilized in modern distribution systems, illustrating their configurations, control technologies, advantages, and limitations. It highlights how these devices, such as D-STATCOM, DVR, UPQC, and others, play a crucial role in mitigating PQ disturbances, improving voltage stability, and enhancing reactive power compensation. By integrating advanced Voltage Source Converters (VSCs) and intelligent control algorithms, D-FACTS devices enable dynamic and decentralized regulation of distribution networks, ensuring operational flexibility and resilience under fluctuating load and generation conditions.

4. Artificial Intelligence

Artificial Intelligence (AI) has emerged as a transformative force in enhancing PQ management within distribution grids, offering new capabilities for monitoring, prediction, and control. The increasing penetration of nonlinear loads, renewable energy sources, and electric vehicles has introduced significant PQ disturbances such as voltage sags, harmonic distortions, and unbalanced loads [37,38]. AI algorithms, particularly machine learning and deep learning, provide intelligent solutions that can analyze massive real-time data streams from smart meters and sensors to detect, classify, and predict PQ events with exceptional accuracy. Techniques like support vector machines, artificial neural networks, and reinforcement learning enable adaptive control mechanisms that continuously optimize the grid's voltage stability and harmonic mitigation strategies, thus maintaining higher reliability and efficiency [39,40].

Moreover, AI integration supports the development of self-healing and self-optimizing distribution networks. By enabling predictive analytics and intelligent decision-making, AI allows utilities to anticipate PQ anomalies before they propagate through the system, thereby reducing outage durations and maintenance costs [41,42]. AI-driven controllers embedded in D-FACTS devices such as DVRs and STATCOMs facilitate dynamic compensation for PQ disturbances. However, this digital transformation also introduces new challenges, including data privacy risks, algorithmic biases, and cybersecurity vulnerabilities. Table 3 illustrates recent AI techniques for PQ in distribution grids.

Table 3. Recent AI techniques for PQ in distribution grids [43-54].

AI technique	Typical inputs	Primary task	PQ phenomena targeted	Strengths	Limitations / notes
CNN / 1D- CNN	Raw voltage/current waveforms; STFT/WT spectrograms	Event detection & classification	Sags, swells, transients, harmonics	Fast inference; robust to noise	Needs labeled data; can be data-hungry
LSTM / GRU	μPMU streams, smart-meter time series, PQ indices (THD, flicker)	Short-term forecasting	Voltage deviation, harmonic drift, flicker	Captures temporal dependencies	Training instability; sequence length tuning
Graph Neural Networks (GNN)	Network topology + node measurements	System-wide state inference & localization	Unbalance propagation, harmonic flow	Uses topology; good for coordination	Needs accurate graph; model mismatch risk
SVM (with wavelets)	Wavelet coefficients; engineered features	Classification	Sags, swells, interruptions	Small data friendly; deterministic	Feature engineering effort; limited scalability
GAN-based augmentation	Limited labeled PQ datasets	Data synthesis for training	All rare / imbalanced events	Mitigates class imbalance	Risk of unrealistic samples; QC needed
Reinforcement Learning (DRL)	Simulated / online grid states, device actions	Closed-loop control / dispatch	Voltage regulation, flicker mitigation	Learns optimal policies; adaptive	Safety constraints; sim- to-real gap

Table 3 illustrates the breadth of AI methodologies currently advancing PQ management in modern distribution grids. Each AI technique provides distinct advantages, depending on the nature of PQ disturbances, data availability, and computational resources. Deep learning models such as CNNs, LSTMs, and Transformers excel in high-dimensional feature extraction and temporal prediction, enabling precise detection of complex PQ disturbances like harmonics and transient events. Traditional machine learning models, including SVMs and Random Forests, remain effective in small-data environments where interpretability and computational simplicity are prioritized. More recent innovations, such as Graph Neural Networks, Reinforcement Learning, and Federated Learning, extend PQ optimization toward system-wide intelligence, distributed control, and privacy-preserving collaboration. Meanwhile, physics-informed and hybrid AI models bridge the gap between theoretical power system models and data-driven learning, enhancing reliability and explainability. Collectively, these advancements underscore that AI-driven PQ management is evolving from reactive monitoring toward predictive and autonomous operation. Future PQ strategies can rely heavily on integrating these AI frameworks with D-FACTS devices, edge computing, and cybersecurity protocols to build resilient, adaptive, and sustainable power distribution infrastructures.

5. Optimization

Optimization through AI has become a central pillar in enhancing PQ within modern distribution grids. As electrical networks grow increasingly complex due to renewable energy integration, electric vehicle (EV) charging, and nonlinear loads, maintaining PQ parameters such as voltage stability, harmonic distortion, and reactive power balance becomes a formidable challenge. AI-based optimization algorithms, including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Deep Reinforcement Learning (DRL), offer dynamic and adaptive control mechanisms that continuously fine-tune system performance in real time [55,56]. These

intelligent optimizers can coordinate D-FACTS devices, capacitor banks, and voltage regulators to minimize PQ disturbances, reduce energy losses, and enhance grid resilience. Unlike conventional rule-based methods, AI-driven optimization approaches can handle multi-objective problems under uncertainty, ensuring more stable and efficient power distribution across diverse operating conditions.

Moreover, AI optimization techniques facilitate the transition toward self-healing and self-optimizing smart grids. Machine learning, and evolutionary computation enable predictive maintenance and adaptive reconfiguration, allowing utilities to anticipate PQ degradations before they affect end-users. Hybrid models combining AI with physical grid models, known as physics-informed optimization, ensure solutions remain technically feasible and grid-compliant [57,58]. Table 4 presents AI-based optimization techniques for PQ enhancement in distribution grids.

Table 4. AI-Based Optimization Techniques for PQ Enhancement in Distribution Grids [59-64].

AI Optimization	Optimization	PQ Problem	Key Advantages	Limitations /
Technique	Objective	Addressed		Challenges
Genetic Algorithm	Minimize voltage	Voltage	Handles multi-	Slow convergence;
(GA)	deviation and	regulation,	objective problems;	risk of premature
	harmonic distortion	harmonic	robust search space	stagnation
		compensation	exploration	
Particle Swarm	Minimize total	Harmonic	Fast convergence;	May get trapped in
Optimization	harmonic distortion	suppression,	simple	local minima
(PSO)	(THD) and power	reactive power	implementation	
	losses	optimization		
Ant Colony	Optimize feeder	Voltage sag	Strong in discrete	Slower for large-
Optimization	reconfiguration and	mitigation,	optimization;	scale systems
(ACO)	PQ cost	unbalanced load	adaptable	
		correction		
Artificial Neural	Predict optimal	Voltage	Learns nonlinear	Requires large
Networks (ANN)	control actions	fluctuation	patterns; self-	training datasets
		forecasting, load	adaptive	
		prediction		
Fuzzy Logic with	Maintain voltage	Flicker and	Tolerant to	Limited scalability
AI Hybridization	stability under	imbalance	uncertainty; easy	for high
	uncertainty	mitigation	interpretation	dimensions
Support Vector	Predict and	Harmonic trend	High accuracy for	Poor scalability for
Regression (SVR)	optimize PQ indices	forecasting	small datasets	large nonlinear
				data
Hybrid AI-PSO-	Multi-objective PQ	Combined sag,	Combines	Higher
GA Models	enhancement	swell, THD	exploration and	computational
		optimization	exploitation; better	load
			accuracy	
Physics-Informed	Enforce physical	Power flow	Improves	Requires domain
Neural	constraints with	optimization with	interpretability and	modeling expertise
Optimization	data learning	PQ balance	realism	
(PINO)				

The comparative analysis of AI-based optimization techniques demonstrates that AI has revolutionized the way PQ issues are identified, analyzed, and mitigated in modern distribution grids. Each optimization algorithm provides unique advantages depending on the system objectives, data structure, and operational constraints. Classical evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) remain highly effective for optimizing voltage regulation, harmonic suppression, and reactive power management. Meanwhile, intelligent learning models, such as Artificial Neural Networks (ANN), Deep Reinforcement Learning (DRL), and Support Vector Regression (SVR), offer superior adaptability and predictive capabilities, enabling real-time optimization and proactive PQ correction under variable load and renewable generation conditions.

6. Opportunities and Challenges

The emergence of AI in the power sector has opened transformative pathways for enhancing PQ in modern distribution grids. As the electrical infrastructure evolves with increasing penetration of renewable energy resources, electric vehicles, and nonlinear loads, maintaining PQ has become both technically complex and operationally critical. AI-driven technologies offer new opportunities to analyze vast data streams from smart meters, and distributed control systems, enabling predictive maintenance, real-time monitoring, and self-healing grid functionalities. However, the integration of AI into PQ management is not without challenges. Data availability, cybersecurity threats, model interpretability, and the absence of standardized policies pose significant barriers to large-scale implementation. Opportunities and Challenges are shown in Figure 2 and Figure 3.

Figure 2. Opportunities

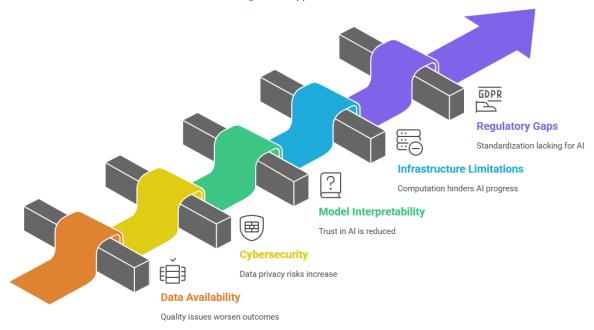


Figure 3. Challenges

A. Opportunities

Real-Time Monitoring and Prediction:

AI enables continuous real-time analysis of voltage, current, and frequency signals, allowing early detection and prediction of PQ disturbances such as harmonics, voltage sags, and transients.

Adaptive and Self-Healing Control:

Machine learning and reinforcement learning algorithms facilitate dynamic control and automatic reconfiguration of grid components, ensuring faster response to PQ events and improved system resilience.

Integration of Distributed Energy Resources (DERs):

AI optimizes the coordination of renewable energy sources, energy storage systems, and electric vehicle chargers, minimizing PQ issues caused by variable generation and fluctuating loads.

Optimization of D-FACTS Devices:

AI-driven optimization techniques improve the operation of DVR, STATCOM, and UPQC devices for effective compensation of voltage imbalance, flicker, and harmonic distortions.

Data-Driven Decision-Making and Forecasting:

AI provides utilities with powerful tools for predictive maintenance, load forecasting, and PQ event classification, leading to reduced downtime, improved efficiency, and cost savings.

- B. Challenges
- Data Availability and Quality Issues:

Reliable AI performance requires high-quality, labeled datasets, yet power grid data are often incomplete, noisy, or inaccessible due to privacy and security restrictions.

Cybersecurity and Data Privacy Risks:

The integration of AI and IoT devices increases exposure to cyber threats, making the protection of communication networks and sensitive grid data a critical concern.

Model Interpretability and Trust:

Many AI models operate as "black boxes," creating challenges in understanding, validating, and trusting automated PQ decisions in safety-critical grid environments.

Computational and Infrastructure Limitations:

Edge devices and older grid infrastructures may lack the computational power needed to support complex AI models, limiting their real-time implementation.

Regulatory and Standardization Gaps:

The absence of unified frameworks and standards for AI deployment in power systems hinders interoperability, scalability, and long-term adoption across utilities.

AI represents both an opportunity and a challenge in the ongoing transformation of power distribution systems toward higher reliability and efficiency. On one hand, AI empowers utilities to predict and mitigate PQ disturbances in real time, integrate distributed energy resources seamlessly, and optimize D-FACTS device performance for enhanced voltage stability and harmonic control. It enables data-driven decision-making that reduces operational costs, improves resilience, and fosters the evolution of self-optimizing smart grids. On the other hand, the challenges, ranging from poor data quality and privacy concerns to model transparency and regulatory gaps, demand careful attention. Without proper governance and standardization, AI-driven PQ management may face issues of trust, security, and interoperability. Hence, future progress requires a balanced approach that leverages AI's capabilities while reinforcing data integrity, cybersecurity, and regulatory compliance. By addressing these challenges through research, policy, and innovation, AI can become a cornerstone for achieving intelligent, adaptive, and sustainable PQ management in next-generation distribution grids.

7. Policy Implementation

Policy implementation through AI has become an essential enabler in enhancing PQ within modern distribution grids. As the energy sector undergoes rapid digital transformation, the integration of AI technologies into PQ management systems offers unprecedented opportunities for improving voltage stability, minimizing harmonics, and optimizing the performance of distributed energy resources (DERs). However, without structured policies, the widespread deployment of AI-driven solutions faces challenges related to standardization, interoperability, data governance, and ethical use. Policymakers, regulators, and utilities must therefore collaborate to establish comprehensive frameworks that govern

the safe, transparent, and equitable adoption of AI across the power sector. Such policies ensure that the implementation of AI technologies aligns with national energy goals, cybersecurity standards, and sustainability commitments while fostering innovation and public trust in smart grid operations as demonstrated in Figure 4.

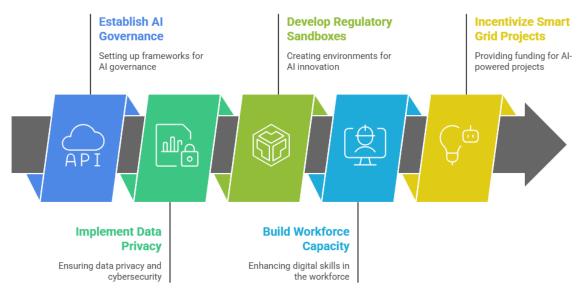


Figure 4. Policy Implementation.

A. Establishment of AI Governance and Standardization Frameworks:

Governments and regulatory bodies should develop clear policies and technical standards guiding the ethical use, interoperability, and validation of AI-based PQ solutions. These frameworks ensure transparency, accountability, and consistency across utilities and manufacturers deploying AI technologies in grid operations.

B. Data Privacy, Cybersecurity, and Ethical Compliance Regulations:

Policy frameworks must enforce strict data protection measures to safeguard consumer and grid data collected for AI analysis. This includes implementing cybersecurity protocols, encryption standards, and ethical AI practices to prevent misuse, hacking, and bias in PQ management systems.

C. Development of Regulatory Sandboxes for AI Innovation:

Policymakers should create regulatory "sandboxes", controlled environments where AI-based PQ algorithms and control systems can be tested safely before large-scale deployment. This allows innovators to validate performance, assess risks, and ensure compliance without jeopardizing grid stability.

D. Capacity Building and Workforce Digital Readiness:

National and institutional policies should support continuous training programs for engineers, operators, and policymakers to strengthen digital literacy and AI proficiency. Skilled professionals are essential to interpret AI-driven PQ insights and integrate them effectively into grid operations.

E. Incentivization and Funding for AI-Powered Smart Grid Projects:

Governments and energy authorities can accelerate AI adoption in PQ improvement by offering financial incentives, research grants, and tax benefits for utilities investing in intelligent PQ monitoring and optimization systems. These incentives promote sustainable innovation and encourage public—private collaboration toward more efficient and resilient power networks.

Effective policy implementation is the cornerstone for harnessing the full potential of AI in improving PQ within distribution grids. Well-defined regulations and governance frameworks help ensure data integrity, protect consumer privacy, and promote responsible AI deployment across all grid levels.

Furthermore, regulatory sandboxes, workforce capacity-building initiatives, and incentive-driven programs play a crucial role in accelerating the adoption of AI-powered PQ monitoring and optimization tools. By integrating policy measures with technological advancement, utilities can achieve a balanced approach that combines innovation with accountability. Ultimately, the synergy between AI and policy frameworks can drive the evolution of intelligent, secure, and sustainable power distribution systems capable of meeting the reliability and efficiency demands of the future energy landscape.

8. Conclusion

Artificial Intelligence (AI) has emerged as a game-changer in addressing Power Quality (PQ) challenges within distribution grids, providing adaptive, predictive, and optimization-driven solutions that enhance overall grid performance. The integration of AI with D-FACTS devices enables precise and autonomous control of voltage stability, harmonic suppression, and reactive power compensation. Optimization algorithms such as Genetic Algorithms, Particle Swarm Optimization, and Deep Reinforcement Learning allow intelligent coordination among grid assets, improving efficiency and resilience. However, the growing dependence on AI introduces new technical and ethical challenges, including data security vulnerabilities, model transparency issues, and the need for standardized validation frameworks. Therefore, effective policy implementation becomes indispensable for ensuring responsible AI deployment in PQ management, through regulatory sandboxes, ethical AI practices, and capacity-building initiatives. In conclusion, the convergence of AI technology, optimization strategies, and sound policy frameworks represents a holistic pathway toward achieving intelligent, secure, and sustainable power distribution systems capable of meeting the dynamic demands of the modern energy landscape.

References

- [1] M. N. Dehaghani, T. Korõtko, and A. Rosin, "AI applications for power quality issues in distribution systems: A systematic review," *IEEE Access*, vol. 13, pp. 18346–18365, 2025.
- [2] N. Damianakis, G. R. C. Mouli, and P. Bauer, "Grid impact of photovoltaics, electric vehicles and heat pumps on distribution grids An overview," *Appl. Energy*, vol. 380, no. 125000, p. 125000, 2025.
- [3] M. Bajaj and A. K. Singh, "A global power quality index for assessment in distributed energy systems connected to a harmonically polluted network," *Energy Sources Recovery Util. Environ. Eff.*, pp. 1–27, 2021.
- [4] A. Shufian, S. Komar Shib, D. Roy Dipto, M. Tanvir Rahman, N. Hannan, and S. Anowarul Fattah, "Fuzzy logic-controlled three-phase dynamic voltage restorer for enhancing voltage stabilization and power quality," *Int. J. Electr. Power Energy Syst.*, vol. 166, no. 110517, p. 110517, 2025.
- [5] M. Khaleel, Z. Yusupov, N. Yasser, and H. J. El-Khozondar, "Enhancing Microgrid performance through hybrid energy storage system integration: ANFIS and GA approaches," *Int. J. Electr. Eng. and Sustain.*, pp. 38–48, 2023.
- [6] S. Shambhu Choudhary, T. Nath Gupta, and I. Hussain, "Intelligent solar grid integration: Advancements in control strategies and power quality enhancement," *Int. J. Circuit Theory Appl.*, 2024.
- [7] D. Welmilla, M. Vilathgamuwa, and Y. Mishra, "Power quality enhancement in virtual synchronous machine-based grid-forming inverters under degradation," in 2025 IEEE Industry Applications Society Annual Meeting (IAS), 2025, pp. 1–5.
- [8] M. Khaleel, Z. Yusupov, Y. Nassar, H. J. El-khozondar, A. Ahmed, and A. Alsharif, "Technical challenges and optimization of superconducting magnetic energy storage in electrical power systems," *e-Prime Advances in Electrical Engineering, Electronics and Energy*, vol. 5, no. 100223, p. 100223, 2023.
- [9] M. A. Basit, S. Dilshad, R. Badar, and S. M. Sami ur Rehman, "Limitations, challenges, and solution approaches in grid-connected renewable energy systems," *Int. J. Energy Res.*, vol. 44, no. 6, pp. 4132– 4162, 2020.
- [10] M. M. Khaleel, M. R. Adzman, S. M. Zali, M. M. Graisa, and A. A. Ahmed, "A review of fuel cell to distribution network interface using D-FACTS: Technical challenges and interconnection trends," *Int. J. Electr. Electron. Eng. Telecommun.*, pp. 319–332, 2021.
- [11] R. Chinthaginjala, A. Srinivasulu, A. Agrawal, T. H. Kim, S. P. Tera, and S. Ahmad, "Hybrid AI and semiconductor approaches for power quality improvement," *Sci. Rep.*, vol. 15, no. 1, p. 25640, 2025.

[12] N. Khosravi, "A hybrid control approach to improve power quality in microgrid systems," *Artif. Intell. Rev.*, vol. 58, no. 10, 2025.

- [13] D. K. Nishad, A. N. Tiwari, S. Khalid, S. Gupta, and A. Shukla, "AI-based hybrid power quality control system for electrical railway using single phase PV-UPQC with Lyapunov optimization," *Sci. Rep.*, vol. 15, no. 1, p. 2641, 2025.
- [14] M. He *et al.*, "Power quality mitigation in modern distribution grids: A comprehensive review of emerging technologies and future pathways," *Processes (Basel)*, vol. 13, no. 8, p. 2615, 2025.
- [15] S. R. Das, P. K. Ray, A. K. Sahoo, K. K. Singh, G. Dhiman, and A. Singh, "Artificial intelligence based grid connected inverters for power quality improvement in smart grid applications," *Comput. Electr. Eng.*, vol. 93, no. 107208, p. 107208, 2021.
- [16] S. R. Das, A. K. Mishra, P. K. Ray, S. R. Salkuti, and S.-C. Kim, "Application of artificial intelligent techniques for power quality improvement in hybrid microgrid system," *Electronics (Basel)*, vol. 11, no. 22, p. 3826, 2022.
- [17] Y. Zhang, Z. Zhu, Z. Deng, and M. Wang, "A novel cause identification method of voltage sag for auxiliary power quality monitoring," *Electric Power Syst. Res.*, vol. 226, no. 109937, p. 109937, 2024.
- [18] D. R. Nair, M. G. Nair, and T. Thakur, "A smart microgrid system with artificial intelligence for power-sharing and power quality improvement," *Energies*, vol. 15, no. 15, p. 5409, 2022.
- [19] J. E. Caicedo, D. Agudelo-Martínez, E. Rivas-Trujillo, and J. Meyer, "A systematic review of real-time detection and classification of power quality disturbances," *Prot. Control Mod. Power Syst.*, vol. 8, no. 1, 2023.
- [20] M. S. Priyadarshini, M. Bajaj, and I. Zaitsev, "Energy feature extraction and visualization of voltage sags using wavelet packet analysis for enhanced power quality monitoring," *Sci. Rep.*, vol. 15, no. 1, p. 2226, 2025.
- [21] Lava J, Cobben J. F. G, Kling W.L, and Van Overbeeke F, "Addressing LV network power quality issues through the implementation of a microgrid," *Renew. Energy Power Qual. J.*, vol. 8, no. 1, pp. 473–476, 2024.
- [22] T. Magesh, G. Devi, and T. Lakshmanan, "Measurement and simulation of power quality issues in grid connected wind farms," *Electric Power Syst. Res.*, vol. 210, no. 108142, p. 108142, 2022.
- [23] S. W. A., S. M. M. R., and A. T., "Wind connected distribution system with intelligent controller based compensators for power quality issues mitigation," *Electric Power Syst. Res.*, vol. 217, no. 109103, p. 109103, 2023.
- [24] M. Khaleel *et al.*, "An optimization approaches and control strategies of hydrogen fuel cell systems in EDG-integration based on DVR technology," *J. Eur. Syst. Autom.*, vol. 57, no. 2, pp. 551–565, 2024.
- [25] M. M. Khaleel, T. Mohamed Ghandoori, A. Ali Ahmed, A. Alsharif, A. J. Ahmed Alnagrat, and A. Ali Abulifa, "Impact of mechanical storage system technologies: A powerful combination to empowered the electrical grids application," in 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), 2022.
- [26] T. K. Kiran, B. Rajagopal, and Y. B. Raju, "Composite least mean fourth algorithm (CLMF) based dynamic voltage restorer for enhancement of power quality," *Int. J. Power Electron. Drive Syst. (IJPEDS)*, vol. 16, no. 3, p. 1484, 2025.
- [27] J. Hmad, A. Bendib, S. Echalih, D. Ziane, A. Houari, and H. Rezk, "Improved harmonics estimation schemes-based shunt active power filter for quality enhancement under high distortions," *Electric Power Syst. Res.*, vol. 246, no. 111657, p. 111657, 2025.
- [28] M. M. Khaleel, M. R. Adzman, and S. M. Zali, "An integrated of hydrogen fuel cell to distribution network system: Challenging and opportunity for D-STATCOM," *Energies*, vol. 14, no. 21, p. 7073, 2021.
- [29] A. H. Soomro *et al.*, "Enhancement of power quality based on dynamic voltage restorer matrix inverter-sliding mode control scheme," *Electric Power Syst. Res.*, vol. 241, no. 111408, p. 111408, 2025.
- [30] M. Khaleel, E. Yaghoubi, E. Yaghoubi, and M. Z. Jahromi, "The role of mechanical energy storage systems based on artificial intelligence techniques in future sustainable energy systems," *Int. J. Electr. Eng. and Sustain.*, pp. 01–31, 2023.
- [31] M. Tarafdar Hagh, M. A. Jabbary Borhany, K. Taghizad-Tavana, and M. Zare Oskouei, "A comprehensive review of flexible alternating current transmission system (FACTS): Topologies, applications, optimal placement, and innovative models," *Heliyon*, vol. 11, no. 1, p. e41001, 2025.
- [32] A. Nigam, K. K. Sharma, M. B. Riaz, M. Yaseen, A. Shafiq, and T. N. Sindhu, "Reactive power compensation during the convergence of grid system with FACTS devices," *Results Eng.*, vol. 23, no. 102449, p. 102449, 2024.

[33] S. A. Adegoke, Y. Sun, Z. Wang, and O. Stephen, "A mini review on optimal reactive power dispatch incorporating renewable energy sources and flexible alternating current transmission system," *Electr. Eng. (Berl., Print)*, 2024.

- [34] M. Khaleel *et al.*, "Battery technologies In electrical power Systems: Pioneering secure energy transitions," *J. Power Sources*, vol. 653, no. 237709, p. 237709, 2025.
- [35] M. Khaleel, Z. Yusupov, N. Yasser, H. Elkhozondar, and A. A. Ahmed, "An integrated PV farm to the unified power flow controller for electrical power system stability," *Int. J. Electr. Eng. and Sustain.*, pp. 18–30, 2023.
- [36] E. M. Ahmed et al., "BONMIN solver-based coordination of distributed FACTS compensators and distributed generation units in modern distribution networks," Ain Shams Eng. J., vol. 13, no. 4, p. 101664, 2022
- [37] M. Khaleel, Z. Yusupov, H. J. El-Khozondar, and A. Alsharif, "Cyber-resilience strategies for smart microgrids: Classification, construction, recent trends, and policy framework," *Int. J. Electr. Eng. and Sustain.*, pp. 31–47, 2025.
- [38] A. Soroudi, "Controllable transmission networks under demand uncertainty with modular FACTS," *Int. J. Electr. Power Energy Syst.*, vol. 130, no. 106978, p. 106978, 2021.
- [39] M. Almamoori, M. Almaktar, M. Khaleel, F. Mohamed, and A. Elbreki, "Assessing STATCOM-enabled reactive power control in fragile power transmission systems: A case study perspective," *Math. Model. Eng. Probl.*, vol. 11, no. 8, pp. 2019–2028, 2024.
- [40] M. Khaleel *et al.*, "The impact of SMES integration on the power grid: Current topologies and nonlinear control strategies," in *New Technologies, Development and Application VII*, Cham: Springer Nature Switzerland, 2024, pp. 108–121.
- [41] A. R. Singh *et al.*, "AI-enhanced power quality management in distribution systems: implementing a dual-phase UPQC control with adaptive neural networks and optimized PI controllers," *Artif. Intell. Rev.*, vol. 57, no. 11, 2024.
- [42] M. Khaleel, N. El-Naily, H. Alzargi, M. Amer, T. Ghandoori, and A. Abulifa, "Recent progress in synchronization approaches to mitigation voltage sag using HESS D-FACTS," in 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS), 2022.
- [43] D. K. Nishad, A. N. Tiwari, S. Khalid, S. Gupta, and A. Shukla, "AI based UPQC control technique for power quality optimization of railway transportation systems," *Sci. Rep.*, vol. 14, no. 1, p. 17935, 2024.
- [44] M. Sai Sandeep, N. Balaji, M. Ali, and S. Srinivasan, "Power quality improvement and performance enhancement of distribution system using D-STATCOM," *Smart Grids for Smart Cities Volume 1*. Wiley, pp. 357–375, 10-July-2023.
- [45] L. Zjavka, "Power quality statistical predictions based on differential, deep and probabilistic learning using off-grid and meteo data in 24-hour horizon," *Int. J. Energy Res.*, vol. 46, no. 8, pp. 10182–10196, 2022.
- [46] M. M. Khaleel, A. A. Ahmed, and A. Alsharif, "Energy Management System Strategies in Microgrids: A Review," *NAJSP*, pp. 1–8, 2023.
- [47] M. Esmaeili, H. Shayeghi, K. Valipour, A. Safari, and F. Sedaghati, "Power quality improvement of multimicrogrid using improved custom power device called as distributed power condition controller," *Int. Trans. Electr. Energy Syst.*, vol. 30, no. 3, 2020.
- [48] N. W. Ndlela and I. E. Davidson, "Network coordination between high-voltage DC and high-voltage AC transmission systems using flexible AC transmission system controllers," *Energies*, vol. 15, no. 19, p. 7402, 2022.
- [49] M. Khaleel, S. A. Abulifa, and A. A. Abulifa, "Artificial intelligent techniques for identifying the cause of disturbances in the power grid," *Brilliance*, vol. 3, no. 1, pp. 19–31, 2023.
- [50] M. Mishra, "Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review," *Int. Trans. Electr. Energy Syst.*, vol. 29, no. 8, p. e12008, 2019.
- [51] M. M. Khaleel, Z. Yusupov, M. T. Güneşer, A. A. Abulifa, A. A. Ahmed, and A. Alsharif, "The effect of PEMFC on power grid using advanced equilibrium optimizer and particle swarm optimisation for voltage sag mitigation," in 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), 2023, pp. 755–760.
- [52] M. Khaleel, Z. Yusupov, M. Elmnifi, T. Elmenfy, Z. Rajab, and M. Elbar, "Assessing the financial impact and mitigation methods for voltage sag in power grid," *Int. J. Electr. Eng. and Sustain.*, pp. 10–26, 2023.
- [53] A. Ghayth, Z. Yusupov, A. Hesri, and M. Khaleel, "Performance enhancement of PV array utilizing Perturb & Observe algorithm," *Int. J. Electr. Eng. and Sustain.*, pp. 29–37, 2023.
- [54] M. Khaleel, A. A. Ahmed, and A. Alsharif, "Artificial Intelligence in Engineering," *Brilliance*, vol. 3, no. 1, pp. 32–42, 2023.

[55] L. Zjavka, "Power quality estimations for unknown binary combinations of electrical appliances based on the step-by-step increasing model complexity," *Cybern. Syst.*, vol. 55, no. 5, pp. 1184–1204, 2024.

- [56] A. A. Memon, M. A. Koondhar, S. F. Al-Gahtani, Z. M. S. Elbarbary, and Z. M. Alaas, "Comprehensive review of power quality disturbance detection and classification techniques," *Comput. Electr. Eng.*, vol. 126, no. 110512, p. 110512, 2025.
- [57] V. S. Shah, M. S. Ali, and S. A. Shah, "An optimized deep learning model for estimating load variation type in power quality disturbances," *Sustain. Comput. Inform. Syst.*, vol. 44, no. 101050, p. 101050, 2024.
- [58] P. Pijarski and A. Belowski, "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—introduction to the special issue," *Energies*, vol. 17, no. 2, p. 516, 2024.
- [59] H. Albeshr, M. Salih, T. A. Naidu, S. K. Sadanandan, and T. Ghaoud, "AI driven approach to power quality detection and classification," in 2024 6th International Conference on Smart Power & Internet Energy Systems (SPIES), 2024, pp. 189–194.
- [60] D. K. Nishad, A. N. Tiwari, S. Khalid, and S. Gupta, "Power quality solutions for rail transport using Albased unified power quality conditioners," *Discov. Appl. Sci.*, vol. 6, no. 12, 2024.
- [61] S. Mishra *et al.*, "Real time intelligent detection of PQ disturbances with variational mode energy features and hybrid optimized light GBM classifier," *IEEE Access*, vol. 12, pp. 47155–47172, 2024.
- [62] L. Zjavka, "Power quality validation in micro off-grid daily load using modular differential, LSTM deep, and probability statistics models processing NWP-data," *Syst. Sci. Control Eng.*, vol. 12, no. 1, 2024.
- [63] Z. M. Ali, M. Ćalasan, F. Jurado, and S. H. E. Abdel Aleem, "Complexities of power quality and harmonic-induced overheating in modern power grids studies: Challenges and solutions," *IEEE Access*, vol. 12, pp. 151554–151597, 2024.
- [64] K. Srilakshmi, G. S. Rao, P. K. Balachandran, and T. Senjyu, "Green energy-sourced AI-controlled multilevel UPQC parameter selection using football game optimization," *Front. Energy Res.*, vol. 12, 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025