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Abstract: This article synthesizes the state of the art in the optimization of Hybrid Renewable Energy Systems
(HRES), emphasizing that robust HRES planning is inherently an integrated sizing-and-dispatch problem
constrained by techno-economic, environmental, and reliability requirements. The review first consolidates
classical optimization methods, highlighting the continued relevance of deterministic programming
(LP/MILP/MINLP) for transparent and reproducible co-optimization of capacity investment and operational
dispatch, alongside analytical, graphical, iterative, and probabilistic approaches for feasibility screening and
baseline benchmarking. It then evaluates artificial intelligence-based optimization techniques, including
evolutionary computation, swarm intelligence, and multi-objective evolutionary frameworks, noting their
effectiveness in nonconvex, mixed-variable, and simulation-driven sizing problems while underscoring the need
for rigorous constraint handling, statistical validation, and transparent reporting of computational budgets. The
article further examines hybrid optimization strategies that integrate global search with exact dispatch solvers,
surrogate-assisted learning, decomposition schemes, and control-co-design paradigms, identifying these as mature
approaches that enhance feasibility, scalability, and operational realism. Recent trends in newly proposed Al
optimizers are critically discussed, with emphasis on reproducibility, sensitivity analysis, and fair benchmarking
against strong baselines. Finally, the article outlines the role of software tools in enabling practical HRES
optimization, spanning packaged techno-economic platforms, solver-based modeling environments, and co-
simulation workflows for network-constrained planning. Overall, the findings indicate a clear progression toward
multi-objective, uncertainty-aware, degradation-informed formulations implemented through integrated
toolchains and hybrid solver—AlI architectures, with future work warranted on uncertainty quantification, network
and resilience constraints, and reproducible evaluation protocols.

Keywords: Hybrid Renewable Energy Systems, Classical optimization methods, Artificial intelligence, Multi-
objective optimization.

1.Introduction

Fossil fuel resources remain geographically concentrated in a limited set of jurisdictions, a structural
characteristic that confers disproportionate leverage over global energy supply security and price
formation [1,2]. By contrast, renewable energy resources are broadly distributed but intrinsically
variable, with generation profiles governed by meteorological and seasonal conditions. This asymmetry
amplifies systemic vulnerability: geopolitical instability and conflict in fossil-fuel-rich regions can
propagate supply shocks, heighten price volatility, and undermine macroeconomic stability [4-6].
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Concurrently, escalating climate-risk concerns and decarbonization imperatives have accelerated the
global transition toward low-carbon energy systems [7-9]. Within this context, hybrid renewable energy
systems (HRES), particularly configurations integrating biomass, hydropower, wind, and solar
technologies, have become pivotal enablers of energy sustainability by improving supply adequacy,
flexibility, and resilience through portfolio diversification. Recent assessments report rapid expansion
in renewable deployment, with 2023 figures indicating installed capacities exceeding approximately
405.5 GW (solar PV), 150.3 GW (bioenergy), 123.1 GW (wind), and ~24.0 GW (hydropower). In parallel,
grid-scale energy storage remains dominated by pumped hydro storage (PHS), which accounts for
roughly 97% of global storage capacity in many widely cited assessments, underscoring its continuing
centrality to large-scale flexibility provision [10-13].

The optimization of Hybrid Renewable Energy Systems (HRES) has historically been grounded in
classical optimization methods, which remain essential for transparent model formulation and
benchmarking. Deterministic numerical approaches, such as linear programming (LP), mixed-integer
linear programming (MILP), and mixed-integer nonlinear programming (MINLP), enable rigorous co-
optimization of component sizing and operational dispatch under explicit technical constraints (e.g.,
power balance, state-of-charge dynamics, converter limits) and reliability indices (e.g., LPSP, EENS) [14-
18]. Complementary classical strategies, including analytical and graphical constructions as well as
iterative search, have been widely used for preliminary design and feasibility screening, particularly
where simplified energy-balance representations and autonomy constraints provide engineering
insight. Although these methods can deliver reproducible and, in some cases, provably optimal
solutions, their performance may degrade when confronted with strong nonconvexities, discontinuities,
high-dimensional design spaces, and high-resolution time-series operation, conditions that characterize
modern HRES planning, especially with degradation-aware storage and hydrogen subsystems [19-22].

To address these complexities, artificial intelligence (Al)-based optimization has become a dominant
paradigm in contemporary HRES sizing research, with evolutionary computation and swarm
intelligence methods (e.g.,, GA/DE/ES, PSO variants) widely adopted for their ability to search
nonconvex spaces and accommodate mixed discrete, continuous variables [23-25]. Multi-objective Al
frameworks (e.g., NSGA-II/IIl, MOEA/D) are particularly valuable because HRES planning is inherently
multi-criteria, requiring explicit trade-off analysis across cost, emissions, and reliability. More recently,
learning-enabled strategies, such as surrogate-assisted optimization (Gaussian processes, neural
networks, gradient boosting) and reinforcement learning, have been introduced to reduce
computational cost and to better capture sequential decision-making under uncertainty [23-26]. The
recent trend is a clear shift toward hybrid and uncertainty-aware formulations: coupling global Al
search with exact dispatch solvers (MILP/MINLP), embedding stochastic/robust optimization to
internalize resource and demand uncertainty, and incorporating high-fidelity component models
(battery aging, electrolyzer part-load behavior) via surrogate modeling or decomposition [27,28].

In parallel, software tools have become central enablers of HRES optimization by providing
integrated environments for simulation, dispatch, economic assessment, and constraint verification.
Packaged techno-economic platforms support rapid feasibility analysis and scenario comparison, while
optimization-centric planning tools and algebraic modeling frameworks (e.g., Python/Julia-based
modeling with commercial or open solvers) enable fully customized objective functions and constraint
sets suitable for publication-grade formulations [29,30]. Where electrical network realism is required,
distribution-system simulators and co-simulation workflows are commonly coupled to external
optimizers to enforce voltage and thermal limits, quantify losses, and ensure implementable designs at
feeder level. Current best practice increasingly favors toolchains rather than single tools: a structured
workflow in which data pipelines, time-series simulation, solver-based dispatch, and decision analysis
are integrated to produce robust sizing recommendations that are technically feasible, economically
defensible, and aligned with resilience and decarbonization targets [31-33].

Numerous studies have investigated the optimization of hybrid renewable energy systems (HRES),
reflecting their growing importance for achieving cost-effective, reliable, and low-carbon energy supply
in both grid-connected and off-grid contexts. Study [34] presents an optimized HRES sizing framework
based on the Lotus Effect Optimization Algorithm (LEOA), a recently developed nature-inspired
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metaheuristic reported to exhibit strong capability in addressing multi-objective, nonlinear
optimization problems. The proposed methodology targets the simultaneous minimization of the
levelized cost of energy (LCOE), enhancement of system reliability, and mitigation of environmental
impacts. Validation is performed through a real-world case study in Qassim, Saudi Arabia. The reported
results indicate that LEOA provides superior performance relative to benchmark algorithms, including
PSO, GA, simulated annealing (SA), and MOPSO, demonstrated through improved convergence
behavior, higher solution accuracy, and reduced computational effort. Specifically, the optimized
design achieves an LCOE of USD 0.275/kWh, attains an 85% renewable energy penetration level, and
delivers an emissions reduction of approximately 40%. Collectively, these outcomes suggest that LEOA
constitutes a viable optimization engine for deriving economically attractive, reliable, and
environmentally sustainable HRES designs, with potential applicability in future smart-grid planning
and operation.

In [35], the proposed HRES sizing model is demonstrated through a case study in Dunhuang City,
China, and its effectiveness is assessed via comparative evaluation against alternative optimization
techniques. The results indicate that the Modified Al-Biruni Earth Radius (MBER) algorithm yields the
most cost-effective and dependable configuration, reporting a total system cost of approximately 4.23
million (in the stated currency). Relative to competing approaches, MBER is reported to achieve
favorable techno-economic and reliability performance, including an overall cost on the order of 4.1
million USD, a low loss of power supply probability (LPSP), and an annual unmet-load duration of
approximately 356 h. In the broader analysis, a representative baseline solution is also noted with an
overall cost of 5.26 million (in the stated currency) at 0.5% LPSP, underscoring the direct influence of
reliability targets on total cost and system dependability.

Study [36] investigated the techno-economic optimization of a grid-connected hybrid renewable
energy system (HRES) for the Moroccan context, employing a suite of metaheuristic optimizers, Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimization (GWO), and Artificial
Bee Colony (ABC), as well as hybrid variants that couple these algorithms with a Modified Marquardt
Gradient Descent (MGD) scheme to enhance convergence and solution refinement. The principal design
criterion is the minimization of the levelized cost of electricity (LCOE) while maintaining satisfactory
energy adequacy and renewable contribution. The optimized configurations are reported to deliver
annual electricity generation exceeding 5000 kWh for system capacities up to 20 kWp, which supports
a daily demand of 17.12 kWh (approximately 6248.8 kWh annually), while ensuring a renewable energy
fraction (REF) of no less than 80%.

This article contributes a unified synthesis of Hybrid Renewable Energy System (HRES) optimization
by framing the problem explicitly as an integrated sizing-and-dispatch task governed by techno-
economic objectives (e.g.,, NPC/LCOE), environmental targets, and reliability requirements (e.g.,
LPSP/EENS), and by providing a structured taxonomy that comparatively organizes classical methods
(numerical, analytical, graphical, iterative, probabilistic), artificial intelligence-based techniques
(evolutionary, swarm, surrogate-assisted, and reinforcement learning), and hybrid optimization
frameworks. It further advances the discussion by critically positioning hybrid architectures,
particularly global-search sizing coupled with exact MILP/MINLP dispatch, as well as surrogate- and
decomposition-assisted variants, as a best-practice direction for achieving feasible, scalable, and
operationally realistic designs. In addition, it evaluates recent trends in newly proposed Al optimizers
and articulates methodological standards required for credible adoption, including standardized
benchmarking, parameter sensitivity analysis, operator ablation, and transparent reporting of
computational budgets. Finally, the article offers practical guidance on software tool usage by
distinguishing packaged techno-economic platforms, solver-based modeling environments, and
network-constrained co-simulation workflows, and it outlines a forward-looking research agenda
emphasizing uncertainty quantification, degradation-aware modeling, resilience and network
constraints, and reproducible evaluation protocols to strengthen the rigor and real-world impact of
future HRES optimization studies.
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2. Classical Optimization Methods

The optimal sizing of hybrid renewable energy systems (HRES) constitutes a critical planning
problem that directly influences system techno-economic viability, operational reliability, and
environmental performance [36-38]. An HRES typically integrates multiple energy sources, such as
photovoltaic (PV) arrays, wind turbines, energy storage systems, and auxiliary conventional generators,
to supply electrical demand under variable resource availability and load conditions. In this context,
optimal sizing refers to the systematic determination of the installed capacities of system components
such that predefined objectives, while satisfying technical and operational constraints [39-42].

Before the widespread adoption of modern metaheuristic, artificial intelligence, and hybrid
optimization frameworks, a broad class of classical optimization methods formed the foundation of
HRES sizing studies [43-45]. These methods, which include numerical, graphical, iterative, probabilistic,
and analytical approaches, are characterized by their deterministic formulations, mathematical
transparency, and strong physical interpretability [46-49]. Figure 1 demonstrates classical optimization
methods.

Numerical
Methods

Graphical
Construction
Methods

Analytical
Method: q
et Classical

Optimization
Methods

Probabilistic
Methods

Iterative
Methods

Figure 1. Classical Optimization Methods.

Classical optimization methods have been extensively applied in off-grid, grid-connected, and
remote microgrid HRES planning, often relying on simplified yet insightful representations of energy
balance, storage dynamics, and reliability indices. Each method category offers distinct advantages and
limitations in terms of modeling accuracy, scalability, treatment of uncertainty, and computational
burden. Table 1 illustrates classical optimization methods for optimal sizing of hybrid renewable energy
systems (HRES).

Table 1. Classical optimization methods for optimal sizing of HRES [50-61]

Method Core Principle Typical Sizing Objective Constraints / Strengths
Class Variables Functions Performance
Metrics
Numerical Formulate sizing as PV, wind, NPC, LCOE, Power balance, High accuracy;
Methods deterministic battery TAC, fuel SOC limits, reproducible;
optimization and (KkWh/KkW), cost, reliability (LPSP,  global optimum
solve using inverter, diesel emissions. EENS), for convex
numerical solvers generator, operational models.
(LP, MILP, electrolyzer, limits.
MINLP). hydrogen tank
capacities.
Graphical =~ Use visual trade-off =~ Typically, two Cost- Autonomy Simple,
Construction curves and main variables reliability hours, energy intuitive, useful
Methods feasibility regions (e.g, PVvs trade-off, sufficiency, for preliminary
to determine battery, PV vs minimum renewable design.
suitable system wind). capacity for fraction.
sizes. autonomy.
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Iterative Enumerate Discrete PV, NPC or LPSP, unmet Flexible;
Methods candidate sizes and wind, battery, LCOE load, SOC handles

simulate diesel sizes. minimization feasibility. nonlinear
performance with component
iteratively until reliability models.
objectives are met. satisfaction.

Probabilistic Incorporate Same as Expected cost LOLP, LOLE, Realistic

Methods uncertainty using numerical minimization EENS, treatment of
probability methods but under confidence uncertainty;
distributions and under reliability levels. risk-aware
reliability theory. uncertainty. probability sizing.
constraints.
Analytical Closed-form or PV, wind, Minimum Energy Very fast; useful
Methods simplified battery sizes capacity for neutrality, for first-order
equations based on using average energy autonomy estimates.
energy balance and values. sufficiency. duration.

autonomy.

A. Numerical Optimization Methods
Numerical optimization methods constitute one of the most widely adopted classical approaches for
optimal HRES sizing. In these methods, the sizing problem is formulated as a deterministic
mathematical optimization model, typically expressed as linear programming (LP), mixed-integer
linear programming (MILP), or mixed-integer nonlinear programming (MINLP). Decision variables
represent the installed capacities of system components, while objective functions commonly aim to
minimize net present cost (NPC), levelized cost of energy (LCOE), or total annualized cost (TAC).
Numerical methods enable rigorous handling of operational constraints such as power balance, battery
state-of-charge dynamics, component capacity limits, and reliability indices (e.g., LPSP or EENS). Their
main strength lies in their reproducibility and, for convex formulations, their ability to guarantee global
optimality [62-65]. However, their applicability may be constrained by the need for linearization or
simplification of inherently nonlinear component models, and computational complexity can increase
significantly with long-term, high-resolution simulations.
B. Graphical Construction Methods
Graphical construction methods rely on visual representations of energy balance, reliability
constraints, and cost—capacity trade-offs to determine feasible and near-optimal system sizes. Typical
examples include capacity-reliability curves, iso-cost lines, and autonomy-based sizing charts. These
methods are particularly common in early-stage HRES feasibility studies and educational contexts.
Graphical methods generally focus on a limited number of dominant sizing variables, such as PV
capacity versus battery storage or PV-wind capacity combinations. Their main advantage lies in their
intuitive nature and ease of interpretation [65-69]. However, due to their limited scalability and low
resolution, they are unsuitable for complex multi-component HRES configurations and cannot
adequately capture time-coupled operational constraints.
C. Iterative Methods
operation. For each candidate configuration, system performance is evaluated against predefined
objectives and constraints, and the optimal solution is selected based on Iterative methods employ
systematic enumeration or stepwise adjustment of candidate system sizes combined with chronological
simulation of HRES comparative performance. Iterative approaches are highly flexible and capable of
incorporating nonlinear and black-box component models, including detailed battery and generator
behaviors [70-74].
D. Probabilistic Methods
Probabilistic optimization methods explicitly account for uncertainties in renewable resource
availability, load demand, and other stochastic inputs. These methods employ probability distributions,
reliability theory, or scenario-based modeling to ensure that the HRES satisfies reliability criteria with
a specified confidence level. Probabilistic methods typically minimize expected cost subject to
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probabilistic reliability constraints such as LOLP, LOLE, or EENS. Their key advantage is their ability
to produce risk-aware and more realistic sizing decisions, especially for systems exposed to high
variability [75-77]. However, they require extensive data and careful statistical modeling, and their
results can be sensitive to distribution assumptions and correlation structures.

E. Analytical Methods

Analytical methods derive closed-form or semi-analytical expressions for HRES sizing based on
simplified energy balance equations and storage autonomy considerations. These methods often rely
on average or representative values of renewable generation and load demand. Analytical approaches
are computationally efficient and provide valuable insight into the fundamental relationships between
system components [79-81]. They are particularly useful for first-order feasibility assessment and
derivation of design guidelines. However, their reliance on simplifying assumptions limits their
accuracy, as they typically neglect temporal variability, extreme events, and detailed operational
constraints.

In summary, classical optimization methods continue to play a fundamental role in HRES sizing
research and practice. While each method category exhibits inherent limitations, their transparency,
physical interpretability, and methodological rigor make them indispensable for preliminary design,
comparative analysis, and validation of advanced optimization techniques.

3. Artificial Intelligence-Based Optimization Techniques

The optimal sizing of hybrid renewable energy systems (HRES) has evolved into a highly complex
and multidimensional optimization problem due to the increasing penetration of variable renewable
energy sources, the integration of advanced storage technologies, and the growing emphasis on techno-
economic efficiency, environmental sustainability, and system reliability. Unlike conventional power
systems, HRES planning must simultaneously address nonlinear component characteristics, time-
coupled operational dynamics, stochastic renewable resources, and conflicting design objectives such
as cost minimization, emission reduction, and reliability maximization [82,83].

Classical optimization techniques, while foundational, often encounter limitations when dealing
with large-scale, nonconvex, and uncertainty-driven HRES sizing problems. In response, artificial
intelligence (Al)-based optimization techniques have gained significant traction in recent years. These
techniques leverage learning, adaptation, and population-based search mechanisms to efficiently
explore complex solution spaces without requiring strict mathematical assumptions such as convexity
or linearity [84,85]. As a result, Al-based methods have become particularly attractive for HRES
applications involving high-resolution time-series simulations, nonlinear storage degradation models,
hydrogen subsystems, and multi-objective planning requirements. Figure 2 shows artificial
intelligence-based optimization techniques.

Artificial
Intelligence—Based
Optimization

Techniques

Multi-OpJectlve Swarm Fuzzy and Neuro- Surrogate-Assisted Relnfprcement
Evolutionary Learning—Based

Optimization Intelligence Fuzzy Methods Optimization Optimization

Evolutionary
Computation

Hybrid Al
Frameworks

Figure 2. Artificial Intelligence-Based Optimization Techniques.

Al-based optimization approaches encompass a broad spectrum of techniques, including
evolutionary computation, swarm intelligence, fuzzy and neuro-fuzzy systems, surrogate-assisted
learning, deep learning—guided optimization, reinforcement learning, and hybrid Al frameworks. Each
category offers distinct advantages in terms of global search capability, uncertainty handling,
computational efficiency, and adaptability. Table 2 provides a structured classification of these
methods, highlighting their applications and strengths.
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Table 2. Artificial Intelligence-Based Optimization Techniques Applied to Optimal Sizing of HRES [82-88].

Al-Based Representative  Application in Typical Objective Strengths
Optimization Techniques HRES Sizing Decision Functions
Class Variables
Evolutionary GA, DE, ES, Population- PV, wind, NPC, LCOE, Strong global
Computation CMA-ES based global battery TAC, emissions exploration;
search over energy/power, minimization. handles
capacity inverter, diesel discrete and
combinations generator, continuous
coupled with electrolyzer, H, variables.
time-series storage.
simulation.

Multi-Objective NSGA-II, Simultaneous Same as Cost—emission—  Explicit trade-
Evolutionary NSGA-III, optimization of evolutionary reliability off analysis;
Optimization SPEA2, conflicting computation. trade-offs. suitable for

MOEA/D objectives and planning
generation of studies.
Pareto fronts.
Swarm PSO, MOPSO, Collective PV, wind, NPC/LCOE Simple
Intelligence ACO, ABC agent-based storage, DG minimization; structure; fast
search for capacities. renewable convergence.
optimal fraction
component maximization.
capacities.

Fuzzy and Fuzzy logic, Incorporates Capacity ratios Multi-criteria Handles
Neuro-Fuzzy ANFIS, fuzzy linguistic and and candidate satisfaction uncertainty and
Methods MCDM uncertain configurations. (cost, qualitative

preferences in reliability, criteria.

sizing decisions. emissions).
Surrogate- ANN, GP Uses ML All HRES NPC/LCOE Major
Assisted (Kriging), SVR, surrogates to component minimization computational
Optimization XGBoost, approximate capacities. with reduced speed-up;
Bayesian simulation- evaluations. supports high-
optimization based fidelity models.
performance
metrics.

Reinforcement DQN, PPO, Learns Capacities and ~ Long-term cost ~ Adaptive and

Learning-Based =~ SAC, DDPG operational control policy and reliability suitable for
Optimization policies; sizing parameters. optimization. uncertainty.

evaluated.
Hybrid Al GA +MILP, Combines Al Full set of HRES = Multi-objective ~ High solution
Frameworks PSO +MPC, global search sizing variables. techno- quality and
EA + surrogate with exact or economic robustness.
predictive optimization.
dispatch
optimization.

A. Evolutionary Computation Techniques

Evolutionary computation (EC) techniques, such as Genetic Algorithms (GA), Differential Evolution
(DE), and Evolution Strategies (ES), are among the most widely used Al-based methods for optimal
HRES sizing. These algorithms emulate biological evolution through selection, crossover, and mutation
operators to iteratively improve a population of candidate solutions. In HRES applications, each
individual typically represents a vector of system capacities, including PV arrays, wind turbines, battery
energy and power ratings, inverters, and auxiliary generators. EC techniques are particularly effective
for handling mixed discrete—continuous decision variables and highly nonlinear objective functions.
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They are frequently coupled with chronological simulation models to evaluate system performance in
terms of cost, reliability indices (e.g., LPSP or EENS), and emissions [89-92]. However, their main
drawback lies in high computational demand, especially when long-term, high-resolution simulations
are required, and in their sensitivity to algorithm parameter tuning.

B. Multi-Objective Evolutionary Optimization
Multi-objective evolutionary algorithms (MOEAs), such as NSGA-II, NSGA-III, SPEA2, and MOEA/D,
extend evolutionary computation to explicitly address conflicting objectives inherent in HRES sizing.
Instead of producing a single optimal solution, these algorithms generate a Pareto front that represents
trade-offs among objectives such as net present cost, carbon emissions, and reliability. MOEAs are
particularly valuable for planning and policy-oriented studies, where decision-makers must balance
economic, environmental, and technical criteria. Their ability to visualize trade-offs enhances
transparency and supports informed decision-making. Nevertheless, MOEAs typically incur higher
computational costs than single-objective approaches, and the quality of the Pareto front depends on
diversity preservation and constraint-handling strategies [93-96].

C. Swarm Intelligence Techniques
Swarm intelligence methods, including Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), and Artificial Bee Colony (ABC), are inspired by collective behavior observed in natural
systems. In HRES sizing, these methods explore the solution space through coordinated movements of
agents influenced by individual and collective experience. Swarm intelligence techniques are relatively
simple to implement and often exhibit fast convergence in continuous search spaces. They have been
extensively applied to off-grid and microgrid HRES sizing problems [97-100]. However, premature
convergence and limited constraint-handling capability can compromise solution quality, particularly
in problems involving discrete sizing decisions and strict reliability requirements.

D. Fuzzy and Neuro-Fuzzy Approaches
Fuzzy logic and neuro-fuzzy systems introduce human-like reasoning into the HRES sizing process by
representing objectives and constraints using linguistic variables and membership functions. These
methods are especially useful when design criteria such as “high reliability” or “low cost” are inherently
imprecise or subjective. Fuzzy-based approaches are often employed as decision-support tools or
integrated with other optimization methods to rank candidate system configurations [101-103].

E. Surrogate-Assisted and Machine Learning—Based Optimization

Surrogate-assisted optimization combines machine learning models, such as artificial neural

networks, Gaussian process regression, or gradient-boosting methods, with optimization algorithms to
reduce computational burden. In HRES sizing, surrogates are trained to approximate expensive
simulation outputs, such as long-term cost or reliability metrics, enabling faster evaluation of candidate
solutions [104-106]. This approach significantly accelerates optimization and enables the inclusion of
high-fidelity component models, such as battery aging or hydrogen system dynamics. However,
surrogate accuracy and generalization must be carefully validated, as model errors can mislead the
optimization process if extrapolation occurs beyond the training domain.

F. Reinforcement Learning—Based Optimization
Reinforcement learning (RL) techniques, including DOQN, PPO, SAC, and DDPG, represent a paradigm
shift by framing HRES sizing and operation as a sequential decision-making problem. RL agents learn
optimal policies through interaction with the system environment, receiving rewards based on long-
term performance. RL is particularly suitable for co-design problems that couple sizing with operational
control under uncertainty. Despite its adaptability and learning capability, RL faces challenges related
to training stability, reproducibility, and safety assurance, making it less mature for planning-level
sizing without additional constraint-enforcement mechanisms [107-111].

G. Hybrid AI Frameworks
Hybrid Al frameworks integrate complementary optimization paradigms to exploit their respective
strengths. Common examples include combining evolutionary algorithms with MILP-based dispatch
optimization or integrating Al-based global search with model predictive control (MPC). Hybrid
approaches often achieve superior solution quality and robustness by ensuring both global exploration
and rigorous constraint satisfaction. Although they introduce additional implementation complexity,
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such frameworks are increasingly recognized as state-of-the-art solutions for practical HRES sizing
problems [112-117].

Artificial intelligence-based optimization techniques have emerged as powerful and flexible tools
for addressing the optimal sizing problem of hybrid renewable energy systems (HRES), particularly in
scenarios characterized by nonlinear component behavior, high-dimensional decision spaces, multiple
conflicting objectives, and significant uncertainty in renewable resources and load demand. As
summarized in the table on Al-based optimization techniques applied to HRES sizing, evolutionary
computation and swarm intelligence methods provide strong global search capabilities and are widely
used for techno-economic optimization of system capacities. Multi-objective evolutionary algorithms
further enhance planning analysis by explicitly capturing trade-offs among cost, reliability, and
environmental performance. Fuzzy and neuro-fuzzy approaches contribute interpretability and
facilitate decision-making under vague or qualitative requirements, while surrogate-assisted and
machine learning-based optimization significantly reduce computational burden and enable the
inclusion of high-fidelity component models. Reinforcement learning introduces adaptive and
sequential decision-making capabilities, particularly valuable for co-design of sizing and operation,
although its practical application requires careful safety and constraint management. Hybrid Al
frameworks, which integrate complementary techniques, represent a mature and effective direction for
achieving robust and high-quality solutions.

4. Hybrid optimization techniques applied to optimal sizing of HRES

The optimal sizing of hybrid renewable energy systems (HRES) is inherently a complex planning
problem that involves the simultaneous determination of multiple interdependent component
capacities under technical, economic, environmental, and reliability constraints. As HRES
configurations increasingly incorporate diverse generation technologies, advanced energy storage
systems, power electronic interfaces, and, in some cases, hydrogen-based subsystems, the resulting
optimization problem becomes highly nonlinear, nonconvex, and computationally demanding.
Moreover, the presence of uncertainty in renewable resource availability, load demand, and market
conditions further complicates the sizing process.

While classical and standalone artificial intelligence-based optimization techniques have
demonstrated effectiveness in addressing certain aspects of HRES sizing, each class exhibits intrinsic
limitations. Mathematical programming approaches may struggle with nonlinearity and scalability,
whereas pure Al or metaheuristic methods often lack rigorous constraint enforcement and can be
computationally inefficient when high-fidelity operational models are employed. To overcome these
challenges, hybrid optimization techniques have emerged as a powerful and pragmatic solution that
combines complementary strengths of multiple optimization paradigms within a unified framework.

Hybrid optimization techniques integrate global search capabilities, local refinement, exact
mathematical solvers, learning-based surrogates, and advanced operational control methods to achieve
robust, high-quality sizing solutions. These approaches are particularly well suited for modern HRES
planning, where accuracy, feasibility, uncertainty awareness, and computational efficiency must be
balanced. Table 3 categorizes and compares the main hybrid methodologies.

Table 3. Hybrid optimization techniques applied to optimal sizing of HRES.

Hybrid Typical Hybrid Decision Objective Constraints / Strengths
Technique Combinations Variables Functions Performance
Class Indices
Metaheuristic+  GA/PSO/NSGA-II + PV, wind, NPC, LCOE, Power balance, High solution
Mathematical MILP/MINLP battery TAC, SOC limits, quality;
Programming energy/power, emissions, LPSP, EENS, rigorous
inverter, DG, multi- ramping. constraint
electrolyzer, H, objective satisfaction.
tank. Pareto.
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Metaheuristic + GA +hill climbing, Continuous Cost SOC Improved
Local Search PSO + Nelder-Mead and discrete minimization feasibility, convergence
(Memetic) component with loss-of-load and precision.
capacities. reliability limits.
constraints.
Multi-Stage Analytical/graphical Bounded PV, NPC/LCOE  Reliability and Reduced
Hybrid pre-sizing + GA/PSO  wind, storage =~ minimization. renewable search space;
Optimization capacities. fraction faster
targets. computation.
Surrogate- ANN/GP/XGBoost + All HRES Cost and Learned Significant
Assisted GA/PSO/BO sizing reliability feasibility computational
Hybrid variables. optimization. constraints. speed-up.
Optimization
Decomposition-  Benders/Lagrangian  Investment and NPC/TAC Operational Scalable for
Based Hybrid + heuristics dispatch minimization. feasibility, large systems.
Methods variables. reliability
indices.
Stochastic / Scenario-based MILP  Capacities with Expected LOLP, LOLE, Risk-aware
Robust Hybrid + NSGA-II scenario- cost, CVaR, chance and reliable
Optimization dependent emissions. constraints. designs.
dispatch.
Control-Co- GA/NSGA-II + Capacities and Long-term SOC safety, Operationally
Design Hybrid MPC/RL controller cost and unmet load robust
Optimization parameters. reliability. penalties. solutions.
Optimization + NSGA-II + Pareto-optimal Multi- Policy and Transparent
MCDM Hybrid TOPSIS/VIKOR/AHP  capacity sets. objective reliability final decision-
trade-offs. constraints. making.

A. Metaheuristic + Mathematical Programming Hybrid Methods

One of the most prominent hybrid frameworks combines metaheuristic algorithms, such as Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), or NSGA-II, with mathematical programming
techniques, typically mixed-integer linear or nonlinear programming (MILP/MINLP). In this
architecture, the metaheuristic operates as an outer loop that explores the space of candidate system
capacities, while the mathematical programming model serves as an inner loop that determines the
optimal operational dispatch for each candidate sizing. This approach ensures rigorous satisfaction of
operational constraints, including power balance, state-of-charge dynamics, unit commitment, and
reliability indices, while retaining strong global exploration capabilities. Consequently, it is widely
regarded as a benchmark-quality method for HRES sizing. However, the requirement to solve
numerous MILP/MINLP problems results in substantial computational overhead and increased
implementation complexity.

B. Metaheuristic + Local Search (Memetic Optimization)

Memetic optimization techniques enhance standard metaheuristics by incorporating local search
methods, such as hill climbing or gradient-free simplex algorithms, to refine promising candidate
solutions. In the context of HRES sizing, global exploration identifies promising regions of the solution
space, after which local optimization improves solution precision and convergence speed. This hybrid
strategy can significantly improve solution quality compared to standalone metaheuristics.
Nevertheless, careful balancing between global and local search phases is essential to avoid premature
convergence or entrapment in local optima, particularly in highly multimodal sizing landscapes.

C. Multi-Stage Hybrid Optimization Approaches

Multi-stage hybrid optimization frameworks decompose the HRES sizing problem into sequential
phases. Typically, an initial analytical or graphical pre-sizing stage is employed to identify feasible
capacity bounds based on energy balance or autonomy requirements. This reduced search space is then
explored using more advanced Al-based or metaheuristic optimization methods. This approach offers
notable computational efficiency by eliminating infeasible or noncompetitive regions early in the
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process. However, its effectiveness depends strongly on the quality of the pre-sizing assumptions, and
overly restrictive bounds may inadvertently exclude the global optimum.
D. Surrogate-Assisted Hybrid Optimization

Surrogate-assisted hybrid optimization integrates machine learning models, such as artificial neural
networks, Gaussian process regression, or gradient-boosted trees, with optimization algorithms to
approximate expensive objective and constraint evaluations. In HRES sizing, surrogates are trained on
simulation or dispatch results and subsequently used to accelerate the optimization process. This hybrid
approach enables the inclusion of high-fidelity models, such as battery degradation or hydrogen system
thermodynamics, which would otherwise be computationally prohibitive. The principal limitation lies
in surrogate accuracy and generalization, necessitating rigorous validation and adaptive sampling
strategies.

E. Decomposition-Based Hybrid Methods

Decomposition-based hybrid techniques apply mathematical decomposition principles, such as
Benders decomposition or Lagrangian relaxation, to separate long-term investment decisions from
short-term operational optimization. Heuristic or Al-based methods are often employed to accelerate
convergence or manage integrality in the investment problem. This structure enhances scalability and
interpretability for large-scale or long-horizon HRES planning problems. However, formulation
complexity and the need for careful coordination between subproblems present significant
implementation challenges.

F. Stochastic and Robust Hybrid Optimization

Hybrid stochastic and robust optimization frameworks combine Al-based search with uncertainty-
aware mathematical programming. Scenario-based stochastic MILP models or robust optimization
formulations are embedded within metaheuristic or evolutionary search processes to produce risk-
aware sizing solutions. These approaches explicitly address variability in renewable generation, load
demand, and economic parameters, leading to more reliable and resilient HRES designs. The main
drawback is the substantial computational burden associated with scenario explosion and the need for
scenario reduction or uncertainty set calibration.

G. Control-Co-Design Hybrid Optimization

Control-co-design hybrid methods integrate sizing optimization with advanced operational control
strategies, such as model predictive control (MPC) or reinforcement learning (RL). Candidate system
sizes are evaluated under realistic, closed-loop operational policies, ensuring that the selected design
performs well under real-time constraints and forecast errors. this hybrid paradigm yields operationally
robust designs but requires extensive simulation or training effort and raises challenges related to
reproducibility and fair benchmarking.

H. Optimization + Multi-Criteria Decision-Making (MCDM) Hybrids

In optimization-MCDM hybrid approaches, multi-objective optimization techniques (e.g., NSGA-II)
are first used to generate a Pareto-optimal set of HRES designs. Subsequently, decision-making tools
such as TOPSIS, VIKOR, or AHP are applied to select a final design based on stakeholder preferences
or policy priorities.

As summarized in the table on hybrid optimization techniques applied to HRES sizing, frameworks
that combine global search algorithms with exact dispatch optimization ensure both solution optimality
and rigorous constraint satisfaction. Memetic and multi-stage hybrid methods enhance convergence
speed and computational efficiency, while surrogate-assisted and decomposition-based approaches
enable scalable optimization with high-fidelity system models. Stochastic and robust hybrid techniques
further improve design reliability by explicitly accounting for uncertainty, and control-co-design
hybrids ensure that sizing decisions remain valid under realistic operational conditions.

5. Recent trend on Artificial Intelligence-Based Optimization Algorithms

In recent years, a substantial body of work has introduced new population-based optimization
algorithms inspired by biological, physical, and socio-political processes. These methods are typically
designed to enhance global search capability, mitigate premature convergence, and improve the
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exploration—exploitation trade-off in highly nonlinear, nonconvex, and multimodal optimization
landscapes as presented in Figure 3. Nevertheless, the practical value of newly proposed optimizers
depends not only on conceptual novelty but also on rigorous benchmarking, robust parameter
sensitivity analysis, and validation on application-driven problems (e.g., HRES sizing, controller tuning,
and constrained engineering design). The following subsections summarize a set of recently developed
algorithms and their reported applications.

Black Widow

Optimization

Political Optimizer Algorithm

Water Strider

Algorithm @“ Sailfish Optimizer

2/.

Artificial Electric Deer Hunting
Field Algorithm Algorithm

Tunicate Swarm
Algorithm
Figure 3. Recent trend on AL

A. Black Widow Optimization Algorithm
Black Widow Optimization (BWO) is a population-based metaheuristic inspired by the lifecycle and
mating behavior of black widow spiders, particularly the procreation—cannibalism dynamics observed
among spiderlings. The algorithm is commonly governed by three principal control parameters: (i)
procreation (reproduction) rate, (ii) cannibalism rate, and (iii) mutation rate. The procreation percentage
(PP) determines the fraction of individuals permitted to reproduce, thereby improving population
diversity and increasing the likelihood of exploring the search space effectively. Cannibalism is typically
modeled in multiple stages to eliminate inferior individuals early, which can accelerate convergence.
Mutation is then used to preserve a balance between exploration and exploitation by introducing
controlled perturbations into candidate solutions. Appropriate tuning of these parameters is essential
to avoid stagnation and to sustain search diversity, particularly in complex, high-dimensional problems.
In terms of applications, BWO has been reported for controller design in standalone hybrid renewable
energy systems integrating wind, tidal, and wave sources.
B. Sailfish Optimizer

The Sailfish Optimizer (SFO) is inspired by the cooperative hunting strategy of sailfish, where
predator—prey interactions are modeled through two populations: predators (sailfish) and prey
(sardines). In the algorithmic formulation, sailfish represent candidate solutions (positions in the search
space), while sardines contribute to diversification by modeling prey dynamics and collective defense
behaviors. The method alternates attack strategies to disrupt prey formations, updates prey movements
across the search space, and allows predators to “capture” prey by relocating toward fitter positions.

Typically, the best sailfish solution and the most “injured” sardine (a proxy for vulnerable solutions)
are retained to guide exploitation, implying that the elite solutions can significantly influence
convergence behavior and overall performance. SFO is often reported to offer rapid convergence and
competitive global search performance, especially for large-scale problems, due to its structured balance
between intensification (predators) and diversification (prey). To strengthen exploitation, a hybrid
adaptive hill-climbing Binary Sailfish Optimizer has been proposed and applied to feature selection
problems using standard UCI datasets, with comparative evaluation against multiple Al-based feature
selection techniques.
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C. Deer Hunting Algorithm

The Deer Hunting Algorithm (DHA) is a human-inspired optimization method that emulates
hunting strategies by considering factors such as wind direction and prey positioning. The algorithm
initializes a population of hunters and designates a leader, while the remaining hunters (successors) are
positioned relative to the leader and iteratively updated using coefficient vectors designed to move the
population toward promising regions of the search space. The method may incorporate angular updates
that relate the wind angle to the prey visualization angle, supporting exploration by enabling successors
to adjust their search trajectories.

DHA has been validated on benchmark suites and constrained engineering design problems,
demonstrating competitive performance against established optimizers. However, a commonly noted
limitation is its susceptibility to convergence issues due to reliance on multiple random parameters,
which can increase variability across runs and complicate parameter tuning. In an applied study, an
improved deer hunting approach was used to analyze the economic performance of a combined solar
chimney power plant integrated with SOEC, SOFC, and HRSG for residential power supply in Yazd,
Iran, with comparative results reported against GA and PSO.

D. Tunicate Swarm Algorithm

The Tunicate Swarm Algorithm (TSA) is a bio-inspired optimizer motivated by the swarming
behaviors of marine tunicates and their jet propulsion mechanisms. In the mathematical model,
candidate solutions (search agents) evolve under three key behavioral conditions: (i) avoiding
collisions/conflicts with neighboring agents through a position update vector that may account for social
and environmental forces, (ii) moving toward the best neighboring solution to promote exploitation,
and (iii) converging toward the globally best search agent to enhance intensification. Typically, elite
solutions are preserved to emulate collective swarm intelligence, with remaining agents updating
positions toward the best-performing candidates. An improved TSA has been introduced for
simultaneous allocation and control of capacitor banks (CBs), distributed generators (DGs), and
distribution network reconfiguration (DNR) to reduce power losses and enhance service quality [256].
The method was tested on standard 33-bus, 69-bus, and large-scale 119-bus radial distribution networks
under varying demand scenarios and compared against conventional TSA and other approaches such
as PSO, GA, EA, WCA, BFOA, and CSA.

E. Artificial Electric Field Algorithm

The Artificial Electric Field Algorithm (AEFA) is grounded in Coulomb’s law of electrostatic
attraction and repulsion. In AEFA, candidate solutions are treated as charged particles whose
interactions are driven by electrostatic forces. The “best” particle (with the highest charge,
corresponding to the best fitness) tends to move more conservatively, while other particles update their
positions and velocities based on personal best and global best histories, rendering AEFA a memory-
based optimizer akin to velocity-position update schemes. AEFA has been evaluated on real-parameter,
single-objective optimization benchmarks, with reported competitive performance relative to several
state-of-the-art algorithms. Furthermore, stability and convergence behavior have been examined
through theoretical analysis to identify conditions under which particle motion remains stable and
convergent.

F.  Water Strider Algorithm

The Water Strider Algorithm (WSA) models the lifecycle and behavior of water strider insects,
incorporating territoriality, mating dynamics, ripple-based communication, foraging behavior, and
succession mechanisms. The algorithm begins by initializing a population over a conceptual lake
surface and evaluating fitness. The population is then partitioned into territories, typically assigning
stronger individuals to more advantageous regions. A keystone male’s position is updated through
signals influenced by female response dynamics. Because mating can be energy-intensive, the keystone
then transitions to a foraging phase to locate food resources; failure to locate food leads to replacement
by a new larva whose position is randomly initialized within the territory. WSA has been assessed on
numerical benchmark functions and engineering design problems, with reported results indicating
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improved performance over several comparator algorithms. The inclusion of territorial structuring and
replacement dynamics is intended to preserve diversity while supporting localized intensification.
G. Political Optimizer

The Political Optimizer (PO) is a socio-inspired metaheuristic that maps a multi-stage political
process into an optimization framework. The algorithm typically models five phases: constituency
allocation, party formation, election campaign, inter-party election, and parliamentary affairs. During
initialization, the population is partitioned into political parties and constituencies. In the campaign
phase, position update rules are formulated to reflect learning from previous elections, where party
members and candidates adjust their positions relative to party leaders and constituency winners,
respectively. Inter-party elections are simulated per constituency to select winners, and the
parliamentary phase aggregates winners across parties to form a governing coalition. A distinctive
feature of PO is that each solution may assume dual roles (party member and candidate), and position
updates are guided by two elite references (party leader and constituency winner), rather than a single
global best. This dual-elite interaction aims to diversify guidance signals and improve convergence
robustness. The method has been evaluated on multiple optimization problems against a broad set of
benchmark algorithms, reporting competitive performance.

6. Software Tools

The optimal sizing of hybrid renewable energy systems (HRES) is a multidisciplinary problem that
requires the integrated consideration of techno-economic performance, system reliability,
environmental impact, and operational feasibility under variable renewable resources and load
demand. As HRES configurations become more complex, incorporating diverse generation
technologies, energy storage systems, power electronic interfaces, and, in some cases, hydrogen-based
subsystems, the reliance on analytical or purely theoretical approaches alone becomes insufficient.
Consequently, software tools have become indispensable in HRES sizing studies, providing structured
environments for modeling, simulation, optimization, and decision support as highlighted in Figure 4.

Select Sizing
Platform

HRES Sizing

Refine
Parameters

2 Define System
@ Parameters

Analyze Run
Results Optimization

Figure 4. Software tools applied to optimal sizing of HRES.

Software tools applied to HRES sizing range from commercial techno-economic platforms and
optimization-driven planning tools to power-system simulation environments and algebraic modeling
frameworks. These tools differ significantly in terms of modeling depth, optimization capability,
treatment of uncertainty, and ability to incorporate electrical network constraints. Their adoption has
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enabled researchers and practitioners to evaluate a wide range of design scenarios, perform sensitivity
and uncertainty analyses, and derive practical, implementable system configurations.

A. Commercial techno-economic sizing platforms
Commercial platforms are frequently used for rapid techno-economic assessment and optimal sizing of
HRES configurations by combining component libraries (PV, wind, batteries, diesel generators,
converters, and grid interaction) with built-in dispatch simulation and economic evaluation. HOMER /
HOMER Pro is the most common example, widely adopted for least-cost sizing and feasibility analysis
of off-grid and grid-connected microgrids, enabling comparative scenario studies across technology
mixes and financial assumptions.

B. Optimization-driven microgrid planning tools
Optimization-centric planning tools perform HRES sizing by explicitly solving an optimization model
(often MILP-based) that co-optimizes system capacities and dispatch to minimize cost and/or achieve
resilience and emissions targets. NREL's REopt® is a prominent example: it is designed to optimize
DER system sizes and dispatch for buildings, campuses, and microgrids, and it explicitly supports
resilience analysis such as sustaining critical loads during outages. DER-CAM (LBNL) is another well-
established decision-support tool for determining optimal DER investments in buildings and multi-
energy microgrids, with extensive documentation and tutorials supporting structured workflows.

C. Power-system simulation environments coupled with external optimizers
When HRES sizing must reflect electrical network constraints (e.g., voltage limits, feeder losses, phase
imbalance, hosting capacity, protection constraints), researchers commonly rely on detailed
distribution-system simulators and then couple them with external optimization routines
(MILP/MINLP or metaheuristics). OpenDSS is widely used as an open-source distribution simulator for
DER and microgrid studies, and it is often paired with MATLAB or Python-based optimization to
perform network-constrained planning and sizing. In this workflow, the optimizer proposes candidate
HRES capacities, while the simulator validates feasibility and computes network performance metrics
(losses, voltage profiles, constraint violations), enabling sizing decisions that are electrically realistic
rather than purely energy-balance-based.

D. Algebraic modeling languages and optimization libraries
For publication-grade or project-specific sizing studies requiring full flexibility in objectives and
constraints (e.g., explicit LPSP/EENS limits, degradation-aware storage modeling, emissions caps,
market participation, hydrogen subsystem coupling), HRES sizing is frequently implemented in
algebraic modeling frameworks. In these settings, the system is formulated using an optimization
modeling language (e.g., in GAMS-style workflows for DER-CAM implementations and related
research) and solved using mathematical programming solvers; this approach supports transparent
reporting of decision variables, constraints, and optimality gaps and is particularly effective for
MILP/MINLP formulations in co-optimized sizing and dispatch.

Software tools play a central role in the optimal sizing of hybrid renewable energy systems by
bridging the gap between theoretical optimization models and practical system implementation.
Commercial techno-economic platforms facilitate rapid feasibility assessment and comparative
analysis, while optimization-centric tools enable rigorous co-optimization of system capacities and
dispatch under economic, reliability, and resilience objectives. Power-system simulation environments
further enhance realism by incorporating network-level constraints, and algebraic modeling
frameworks provide maximum flexibility for custom, publication-grade HRES formulations. No single
software tool is universally optimal for all HRES sizing problems. Instead, tool selection should be
guided by system scale, required modeling fidelity, uncertainty considerations, and the specific
objectives of the study. In many advanced applications, hybrid workflows that combine multiple
software tools, such as optimization solvers with power-system simulators, offer the most robust and
credible solutions. As HRES planning continues to evolve toward higher renewable penetration and
increased system intelligence, the strategic use of appropriate software tools can remain a key enabler
of reliable, cost-effective, and sustainable energy system design.
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7. Conclusion

This article reviewed the optimization of Hybrid Renewable Energy Systems (HRES) from a unified
planning perspective, emphasizing that credible HRES design is fundamentally an integrated sizing-
and-dispatch problem conducted under techno-economic, environmental, and reliability constraints.
The discussion established the motivation for HRES optimization in the context of renewable
intermittency, decarbonization requirements, and the need for resilient energy supply, and it framed
optimization as the principal mechanism for balancing competing objectives such as minimizing
lifecycle cost (e.g., NPC/LCOE), reducing emissions, and ensuring adequacy metrics (e.g., LPSP/EENS).
Across the reviewed literature, it is evident that the choice of optimization paradigm must be matched
to model fidelity, uncertainty level, and decision context (off-grid versus grid-connected, resilience-
driven versus cost-driven design), rather than selected solely based on algorithmic novelty.

With respect to classical optimization methods, the review highlighted their continuing importance
due to transparency, reproducibility, and rigorous constraint representation. Numerical programming
approaches (LP/MILP/MINLP) remain indispensable for co-optimizing capacity investment and
operational dispatch when the system can be formulated with sufficient tractability, while analytical,
graphical, iterative, and probabilistic methods provide valuable first-cut feasibility assessment,
sensitivity insights, and baseline benchmarks. Nonetheless, classical methods can become restrictive
under strong nonconvexities, detailed component physics (e.g., electrolyzer part-load efficiency, battery
degradation), and long-horizon high-resolution time series, motivating the adoption of more flexible
solution strategies.

The article then examined Al-based optimization techniques, which have become prevalent because
they can navigate nonconvex and mixed-integer design spaces and readily integrate simulation-based
evaluations. Evolutionary computation and swarm intelligence methods are widely used for single- and
multi-objective sizing, and multi-objective evolutionary algorithms provide explicit Pareto fronts that
support decision-making across cost-emissions, reliability trade-offs. However, the review emphasized
that Al-based methods require disciplined constraint handling, statistical validation, and transparent
reporting of computational budgets to avoid misleading conclusions. Building on this, hybrid
optimization techniques were identified as a mature and practically effective direction, particularly
frameworks that couple global metaheuristic search with exact dispatch solvers (MILP/MINLP),
surrogate-assisted learning for computational acceleration, decomposition strategies for scalability, and
control-co-design approaches that evaluate designs under realistic closed-loop operation. These hybrid
structures frequently deliver superior feasibility, robustness, and solution quality compared with
standalone approaches, albeit with higher implementation complexity.

Recent advances were further characterized by the rapid emergence of new Al optimizers and their
variants, often motivated by specific exploration-exploitation mechanisms. While many of these
algorithms report promising benchmark performance, the review underscored that their research value
in HRES sizing depends on standardized comparisons against strong baselines, sensitivity analysis of
algorithmic parameters, ablation of proposed operators, and evaluation under uncertainty and realistic
operational constraints. Finally, the article demonstrated that software tools are central enablers of
HRES optimization, ranging from packaged techno-economic sizing platforms to solver-centric
modeling environments and power-system simulators coupled with external optimizers for network-
constrained planning. Best practice increasingly favors integrated toolchains that combine data
processing, high-fidelity simulation, solver-based dispatch, and decision analysis, ensuring that
optimized designs are both technically implementable and economically defensible.
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