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Abstract: This article synthesizes the state of the art in the optimization of Hybrid Renewable Energy Systems 

(HRES), emphasizing that robust HRES planning is inherently an integrated sizing-and-dispatch problem 

constrained by techno-economic, environmental, and reliability requirements. The review first consolidates 

classical optimization methods, highlighting the continued relevance of deterministic programming 

(LP/MILP/MINLP) for transparent and reproducible co-optimization of capacity investment and operational 

dispatch, alongside analytical, graphical, iterative, and probabilistic approaches for feasibility screening and 

baseline benchmarking. It then evaluates artificial intelligence–based optimization techniques, including 

evolutionary computation, swarm intelligence, and multi-objective evolutionary frameworks, noting their 

effectiveness in nonconvex, mixed-variable, and simulation-driven sizing problems while underscoring the need 

for rigorous constraint handling, statistical validation, and transparent reporting of computational budgets. The 

article further examines hybrid optimization strategies that integrate global search with exact dispatch solvers, 

surrogate-assisted learning, decomposition schemes, and control–co-design paradigms, identifying these as mature 

approaches that enhance feasibility, scalability, and operational realism. Recent trends in newly proposed AI 

optimizers are critically discussed, with emphasis on reproducibility, sensitivity analysis, and fair benchmarking 

against strong baselines. Finally, the article outlines the role of software tools in enabling practical HRES 

optimization, spanning packaged techno-economic platforms, solver-based modeling environments, and co-

simulation workflows for network-constrained planning. Overall, the findings indicate a clear progression toward 

multi-objective, uncertainty-aware, degradation-informed formulations implemented through integrated 

toolchains and hybrid solver–AI architectures, with future work warranted on uncertainty quantification, network 

and resilience constraints, and reproducible evaluation protocols.  

 

Keywords: Hybrid Renewable Energy Systems, Classical optimization methods, Artificial intelligence, Multi-

objective optimization. 

1.Introduction  

     Fossil fuel resources remain geographically concentrated in a limited set of jurisdictions, a structural 

characteristic that confers disproportionate leverage over global energy supply security and price 

formation [1,2]. By contrast, renewable energy resources are broadly distributed but intrinsically 

variable, with generation profiles governed by meteorological and seasonal conditions. This asymmetry 

amplifies systemic vulnerability: geopolitical instability and conflict in fossil-fuel–rich regions can 

propagate supply shocks, heighten price volatility, and undermine macroeconomic stability [4-6]. 
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Concurrently, escalating climate-risk concerns and decarbonization imperatives have accelerated the 

global transition toward low-carbon energy systems [7-9]. Within this context, hybrid renewable energy 

systems (HRES), particularly configurations integrating biomass, hydropower, wind, and solar 

technologies, have become pivotal enablers of energy sustainability by improving supply adequacy, 

flexibility, and resilience through portfolio diversification. Recent assessments report rapid expansion 

in renewable deployment, with 2023 figures indicating installed capacities exceeding approximately 

405.5 GW (solar PV), 150.3 GW (bioenergy), 123.1 GW (wind), and ~24.0 GW (hydropower). In parallel, 

grid-scale energy storage remains dominated by pumped hydro storage (PHS), which accounts for 

roughly 97% of global storage capacity in many widely cited assessments, underscoring its continuing 

centrality to large-scale flexibility provision [10-13]. 

The optimization of Hybrid Renewable Energy Systems (HRES) has historically been grounded in 

classical optimization methods, which remain essential for transparent model formulation and 

benchmarking. Deterministic numerical approaches, such as linear programming (LP), mixed-integer 

linear programming (MILP), and mixed-integer nonlinear programming (MINLP), enable rigorous co-

optimization of component sizing and operational dispatch under explicit technical constraints (e.g., 

power balance, state-of-charge dynamics, converter limits) and reliability indices (e.g., LPSP, EENS) [14-

18]. Complementary classical strategies, including analytical and graphical constructions as well as 

iterative search, have been widely used for preliminary design and feasibility screening, particularly 

where simplified energy-balance representations and autonomy constraints provide engineering 

insight. Although these methods can deliver reproducible and, in some cases, provably optimal 

solutions, their performance may degrade when confronted with strong nonconvexities, discontinuities, 

high-dimensional design spaces, and high-resolution time-series operation, conditions that characterize 

modern HRES planning, especially with degradation-aware storage and hydrogen subsystems [19-22]. 

     To address these complexities, artificial intelligence (AI)–based optimization has become a dominant 

paradigm in contemporary HRES sizing research, with evolutionary computation and swarm 

intelligence methods (e.g., GA/DE/ES, PSO variants) widely adopted for their ability to search 

nonconvex spaces and accommodate mixed discrete, continuous variables [23-25]. Multi-objective AI 

frameworks (e.g., NSGA-II/III, MOEA/D) are particularly valuable because HRES planning is inherently 

multi-criteria, requiring explicit trade-off analysis across cost, emissions, and reliability. More recently, 

learning-enabled strategies, such as surrogate-assisted optimization (Gaussian processes, neural 

networks, gradient boosting) and reinforcement learning, have been introduced to reduce 

computational cost and to better capture sequential decision-making under uncertainty [23-26]. The 

recent trend is a clear shift toward hybrid and uncertainty-aware formulations: coupling global AI 

search with exact dispatch solvers (MILP/MINLP), embedding stochastic/robust optimization to 

internalize resource and demand uncertainty, and incorporating high-fidelity component models 

(battery aging, electrolyzer part-load behavior) via surrogate modeling or decomposition [27,28].  

     In parallel, software tools have become central enablers of HRES optimization by providing 

integrated environments for simulation, dispatch, economic assessment, and constraint verification. 

Packaged techno-economic platforms support rapid feasibility analysis and scenario comparison, while 

optimization-centric planning tools and algebraic modeling frameworks (e.g., Python/Julia-based 

modeling with commercial or open solvers) enable fully customized objective functions and constraint 

sets suitable for publication-grade formulations [29,30]. Where electrical network realism is required, 

distribution-system simulators and co-simulation workflows are commonly coupled to external 

optimizers to enforce voltage and thermal limits, quantify losses, and ensure implementable designs at 

feeder level. Current best practice increasingly favors toolchains rather than single tools: a structured 

workflow in which data pipelines, time-series simulation, solver-based dispatch, and decision analysis 

are integrated to produce robust sizing recommendations that are technically feasible, economically 

defensible, and aligned with resilience and decarbonization targets [31-33]. 

     Numerous studies have investigated the optimization of hybrid renewable energy systems (HRES), 

reflecting their growing importance for achieving cost-effective, reliable, and low-carbon energy supply 

in both grid-connected and off-grid contexts. Study [34] presents an optimized HRES sizing framework 

based on the Lotus Effect Optimization Algorithm (LEOA), a recently developed nature-inspired 
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metaheuristic reported to exhibit strong capability in addressing multi-objective, nonlinear 

optimization problems. The proposed methodology targets the simultaneous minimization of the 

levelized cost of energy (LCOE), enhancement of system reliability, and mitigation of environmental 

impacts. Validation is performed through a real-world case study in Qassim, Saudi Arabia. The reported 

results indicate that LEOA provides superior performance relative to benchmark algorithms, including 

PSO, GA, simulated annealing (SA), and MOPSO, demonstrated through improved convergence 

behavior, higher solution accuracy, and reduced computational effort. Specifically, the optimized 

design achieves an LCOE of USD 0.275/kWh, attains an 85% renewable energy penetration level, and 

delivers an emissions reduction of approximately 40%. Collectively, these outcomes suggest that LEOA 

constitutes a viable optimization engine for deriving economically attractive, reliable, and 

environmentally sustainable HRES designs, with potential applicability in future smart-grid planning 

and operation. 

     In [35], the proposed HRES sizing model is demonstrated through a case study in Dunhuang City, 

China, and its effectiveness is assessed via comparative evaluation against alternative optimization 

techniques. The results indicate that the Modified Al-Biruni Earth Radius (MBER) algorithm yields the 

most cost-effective and dependable configuration, reporting a total system cost of approximately 4.23 

million (in the stated currency). Relative to competing approaches, MBER is reported to achieve 

favorable techno-economic and reliability performance, including an overall cost on the order of 4.1 

million USD, a low loss of power supply probability (LPSP), and an annual unmet-load duration of 

approximately 356 h. In the broader analysis, a representative baseline solution is also noted with an 

overall cost of 5.26 million (in the stated currency) at 0.5% LPSP, underscoring the direct influence of 

reliability targets on total cost and system dependability. 

     Study [36] investigated the techno-economic optimization of a grid-connected hybrid renewable 

energy system (HRES) for the Moroccan context, employing a suite of metaheuristic optimizers, Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimization (GWO), and Artificial 

Bee Colony (ABC), as well as hybrid variants that couple these algorithms with a Modified Marquardt 

Gradient Descent (MGD) scheme to enhance convergence and solution refinement. The principal design 

criterion is the minimization of the levelized cost of electricity (LCOE) while maintaining satisfactory 

energy adequacy and renewable contribution. The optimized configurations are reported to deliver 

annual electricity generation exceeding 5000 kWh for system capacities up to 20 kWp, which supports 

a daily demand of 17.12 kWh (approximately 6248.8 kWh annually), while ensuring a renewable energy 

fraction (REF) of no less than 80%.  

     This article contributes a unified synthesis of Hybrid Renewable Energy System (HRES) optimization 

by framing the problem explicitly as an integrated sizing-and-dispatch task governed by techno-

economic objectives (e.g., NPC/LCOE), environmental targets, and reliability requirements (e.g., 

LPSP/EENS), and by providing a structured taxonomy that comparatively organizes classical methods 

(numerical, analytical, graphical, iterative, probabilistic), artificial intelligence–based techniques 

(evolutionary, swarm, surrogate-assisted, and reinforcement learning), and hybrid optimization 

frameworks. It further advances the discussion by critically positioning hybrid architectures, 

particularly global-search sizing coupled with exact MILP/MINLP dispatch, as well as surrogate- and 

decomposition-assisted variants, as a best-practice direction for achieving feasible, scalable, and 

operationally realistic designs. In addition, it evaluates recent trends in newly proposed AI optimizers 

and articulates methodological standards required for credible adoption, including standardized 

benchmarking, parameter sensitivity analysis, operator ablation, and transparent reporting of 

computational budgets. Finally, the article offers practical guidance on software tool usage by 

distinguishing packaged techno-economic platforms, solver-based modeling environments, and 

network-constrained co-simulation workflows, and it outlines a forward-looking research agenda 

emphasizing uncertainty quantification, degradation-aware modeling, resilience and network 

constraints, and reproducible evaluation protocols to strengthen the rigor and real-world impact of 

future HRES optimization studies. 
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2. Classical Optimization Methods  

     The optimal sizing of hybrid renewable energy systems (HRES) constitutes a critical planning 

problem that directly influences system techno-economic viability, operational reliability, and 

environmental performance [36-38]. An HRES typically integrates multiple energy sources, such as 

photovoltaic (PV) arrays, wind turbines, energy storage systems, and auxiliary conventional generators, 

to supply electrical demand under variable resource availability and load conditions. In this context, 

optimal sizing refers to the systematic determination of the installed capacities of system components 

such that predefined objectives, while satisfying technical and operational constraints [39-42].  

     Before the widespread adoption of modern metaheuristic, artificial intelligence, and hybrid 

optimization frameworks, a broad class of classical optimization methods formed the foundation of 

HRES sizing studies [43-45]. These methods, which include numerical, graphical, iterative, probabilistic, 

and analytical approaches, are characterized by their deterministic formulations, mathematical 

transparency, and strong physical interpretability [46-49]. Figure 1 demonstrates classical optimization 

methods. 

 
Figure 1. Classical Optimization Methods. 

  

     Classical optimization methods have been extensively applied in off-grid, grid-connected, and 

remote microgrid HRES planning, often relying on simplified yet insightful representations of energy 

balance, storage dynamics, and reliability indices. Each method category offers distinct advantages and 

limitations in terms of modeling accuracy, scalability, treatment of uncertainty, and computational 

burden. Table 1 illustrates classical optimization methods for optimal sizing of hybrid renewable energy 

systems (HRES). 

 
Table 1. Classical optimization methods for optimal sizing of HRES [50-61] 

Method 
Class 

Core Principle Typical Sizing 
Variables 

Objective 
Functions 

Constraints / 
Performance 

Metrics 

Strengths 

Numerical 
Methods 

Formulate sizing as 
deterministic 

optimization and 
solve using 

numerical solvers 
(LP, MILP, 
MINLP). 

PV, wind, 
battery 

(kWh/kW), 
inverter, diesel 

generator, 
electrolyzer, 

hydrogen tank 
capacities. 

NPC, LCOE, 
TAC, fuel 

cost, 
emissions. 

Power balance, 
SOC limits, 

reliability (LPSP, 
EENS), 

operational 
limits. 

High accuracy; 
reproducible; 

global optimum 
for convex 

models. 

Graphical 
Construction 

Methods 

Use visual trade-off 
curves and 

feasibility regions 
to determine 

suitable system 
sizes. 

Typically, two 
main variables 

(e.g., PV vs 
battery, PV vs 

wind). 

Cost–
reliability 
trade-off, 
minimum 

capacity for 
autonomy. 

Autonomy 
hours, energy 

sufficiency, 
renewable 
fraction. 

Simple, 
intuitive, useful 
for preliminary 

design. 

Classical 
Optimization 

Methods 

Numerical 
Methods

Graphical 
Construction 

Methods

Iterative 
Methods

Probabilistic 
Methods

Analytical 
Methods
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Iterative 
Methods 

Enumerate 
candidate sizes and 

simulate 
performance 

iteratively until 
objectives are met. 

Discrete PV, 
wind, battery, 
diesel sizes. 

NPC or 
LCOE 

minimization 
with 

reliability 
satisfaction. 

LPSP, unmet 
load, SOC 
feasibility. 

Flexible; 
handles 

nonlinear 
component 

models. 

Probabilistic 
Methods 

Incorporate 
uncertainty using 

probability 
distributions and 
reliability theory. 

Same as 
numerical 

methods but 
under 

uncertainty. 

Expected cost 
minimization 

under 
reliability 

probability 
constraints. 

LOLP, LOLE, 
EENS, 

confidence 
levels. 

Realistic 
treatment of 
uncertainty; 
risk-aware 

sizing. 

Analytical 
Methods 

Closed-form or 
simplified 

equations based on 
energy balance and 

autonomy. 

PV, wind, 
battery sizes 

using average 
values. 

Minimum 
capacity for 

energy 
sufficiency. 

Energy 
neutrality, 
autonomy 
duration. 

Very fast; useful 
for first-order 

estimates. 

 

A. Numerical Optimization Methods 

     Numerical optimization methods constitute one of the most widely adopted classical approaches for 

optimal HRES sizing. In these methods, the sizing problem is formulated as a deterministic 

mathematical optimization model, typically expressed as linear programming (LP), mixed-integer 

linear programming (MILP), or mixed-integer nonlinear programming (MINLP). Decision variables 

represent the installed capacities of system components, while objective functions commonly aim to 

minimize net present cost (NPC), levelized cost of energy (LCOE), or total annualized cost (TAC). 

Numerical methods enable rigorous handling of operational constraints such as power balance, battery 

state-of-charge dynamics, component capacity limits, and reliability indices (e.g., LPSP or EENS). Their 

main strength lies in their reproducibility and, for convex formulations, their ability to guarantee global 

optimality [62-65]. However, their applicability may be constrained by the need for linearization or 

simplification of inherently nonlinear component models, and computational complexity can increase 

significantly with long-term, high-resolution simulations. 

B. Graphical Construction Methods 

     Graphical construction methods rely on visual representations of energy balance, reliability 

constraints, and cost–capacity trade-offs to determine feasible and near-optimal system sizes. Typical 

examples include capacity–reliability curves, iso-cost lines, and autonomy-based sizing charts. These 

methods are particularly common in early-stage HRES feasibility studies and educational contexts.  

Graphical methods generally focus on a limited number of dominant sizing variables, such as PV 

capacity versus battery storage or PV–wind capacity combinations. Their main advantage lies in their 

intuitive nature and ease of interpretation [65-69]. However, due to their limited scalability and low 

resolution, they are unsuitable for complex multi-component HRES configurations and cannot 

adequately capture time-coupled operational constraints. 

C. Iterative Methods 

     operation. For each candidate configuration, system performance is evaluated against predefined 

objectives and constraints, and the optimal solution is selected based on Iterative methods employ 

systematic enumeration or stepwise adjustment of candidate system sizes combined with chronological 

simulation of HRES comparative performance. Iterative approaches are highly flexible and capable of 

incorporating nonlinear and black-box component models, including detailed battery and generator 

behaviors [70-74].  

D. Probabilistic Methods 

     Probabilistic optimization methods explicitly account for uncertainties in renewable resource 

availability, load demand, and other stochastic inputs. These methods employ probability distributions, 

reliability theory, or scenario-based modeling to ensure that the HRES satisfies reliability criteria with 

a specified confidence level. Probabilistic methods typically minimize expected cost subject to 
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probabilistic reliability constraints such as LOLP, LOLE, or EENS. Their key advantage is their ability 

to produce risk-aware and more realistic sizing decisions, especially for systems exposed to high 

variability [75-77]. However, they require extensive data and careful statistical modeling, and their 

results can be sensitive to distribution assumptions and correlation structures. 

E. Analytical Methods 

     Analytical methods derive closed-form or semi-analytical expressions for HRES sizing based on 

simplified energy balance equations and storage autonomy considerations. These methods often rely 

on average or representative values of renewable generation and load demand. Analytical approaches 

are computationally efficient and provide valuable insight into the fundamental relationships between 

system components [79-81]. They are particularly useful for first-order feasibility assessment and 

derivation of design guidelines. However, their reliance on simplifying assumptions limits their 

accuracy, as they typically neglect temporal variability, extreme events, and detailed operational 

constraints. 

     In summary, classical optimization methods continue to play a fundamental role in HRES sizing 

research and practice. While each method category exhibits inherent limitations, their transparency, 

physical interpretability, and methodological rigor make them indispensable for preliminary design, 

comparative analysis, and validation of advanced optimization techniques.  

3. Artificial Intelligence–Based Optimization Techniques  

     The optimal sizing of hybrid renewable energy systems (HRES) has evolved into a highly complex 

and multidimensional optimization problem due to the increasing penetration of variable renewable 

energy sources, the integration of advanced storage technologies, and the growing emphasis on techno-

economic efficiency, environmental sustainability, and system reliability. Unlike conventional power 

systems, HRES planning must simultaneously address nonlinear component characteristics, time-

coupled operational dynamics, stochastic renewable resources, and conflicting design objectives such 

as cost minimization, emission reduction, and reliability maximization [82,83]. 

     Classical optimization techniques, while foundational, often encounter limitations when dealing 

with large-scale, nonconvex, and uncertainty-driven HRES sizing problems. In response, artificial 

intelligence (AI)–based optimization techniques have gained significant traction in recent years. These 

techniques leverage learning, adaptation, and population-based search mechanisms to efficiently 

explore complex solution spaces without requiring strict mathematical assumptions such as convexity 

or linearity [84,85]. As a result, AI-based methods have become particularly attractive for HRES 

applications involving high-resolution time-series simulations, nonlinear storage degradation models, 

hydrogen subsystems, and multi-objective planning requirements. Figure 2 shows artificial 

intelligence–based optimization techniques. 

 
Figure 2. Artificial Intelligence–Based Optimization Techniques. 

 

     AI-based optimization approaches encompass a broad spectrum of techniques, including 

evolutionary computation, swarm intelligence, fuzzy and neuro-fuzzy systems, surrogate-assisted 

learning, deep learning–guided optimization, reinforcement learning, and hybrid AI frameworks. Each 

category offers distinct advantages in terms of global search capability, uncertainty handling, 

computational efficiency, and adaptability. Table 2 provides a structured classification of these 

methods, highlighting their applications and strengths.  

 

Artificial 
Intelligence–Based 

Optimization 
Techniques 

Evolutionary 
Computation

Multi-Objective 
Evolutionary 
Optimization

Swarm 
Intelligence

Fuzzy and Neuro-
Fuzzy Methods

Surrogate-Assisted 
Optimization

Reinforcement 
Learning–Based 

Optimization

Hybrid AI 
Frameworks
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Table 2. Artificial Intelligence–Based Optimization Techniques Applied to Optimal Sizing of HRES [82-88]. 

AI-Based 

Optimization 

Class 

Representative 

Techniques 

Application in 

HRES Sizing 

Typical 

Decision 

Variables 

Objective 

Functions 

Strengths 

Evolutionary 

Computation 

GA, DE, ES, 

CMA-ES 

Population-

based global 

search over 

capacity 

combinations 

coupled with 

time-series 

simulation. 

PV, wind, 

battery 

energy/power, 

inverter, diesel 

generator, 

electrolyzer, H₂ 

storage. 

NPC, LCOE, 

TAC, emissions 

minimization. 

Strong global 

exploration; 

handles 

discrete and 

continuous 

variables. 

Multi-Objective 

Evolutionary 

Optimization 

NSGA-II, 

NSGA-III, 

SPEA2, 

MOEA/D 

Simultaneous 

optimization of 

conflicting 

objectives and 

generation of 

Pareto fronts. 

Same as 

evolutionary 

computation. 

Cost–emission–

reliability 

trade-offs. 

Explicit trade-

off analysis; 

suitable for 

planning 

studies. 

Swarm 

Intelligence 

PSO, MOPSO, 

ACO, ABC 

Collective 

agent-based 

search for 

optimal 

component 

capacities. 

PV, wind, 

storage, DG 

capacities. 

NPC/LCOE 

minimization; 

renewable 

fraction 

maximization. 

Simple 

structure; fast 

convergence. 

Fuzzy and 

Neuro-Fuzzy 

Methods 

Fuzzy logic, 

ANFIS, fuzzy 

MCDM 

Incorporates 

linguistic and 

uncertain 

preferences in 

sizing decisions. 

Capacity ratios 

and candidate 

configurations. 

Multi-criteria 

satisfaction 

(cost, 

reliability, 

emissions). 

Handles 

uncertainty and 

qualitative 

criteria. 

Surrogate-

Assisted 

Optimization 

ANN, GP 

(Kriging), SVR, 

XGBoost, 

Bayesian 

optimization 

Uses ML 

surrogates to 

approximate 

simulation-

based 

performance 

metrics. 

All HRES 

component 

capacities. 

NPC/LCOE 

minimization 

with reduced 

evaluations. 

Major 

computational 

speed-up; 

supports high-

fidelity models. 

Reinforcement 

Learning–Based 

Optimization 

DQN, PPO, 

SAC, DDPG 

Learns 

operational 

policies; sizing 

evaluated. 

Capacities and 

control policy 

parameters. 

Long-term cost 

and reliability 

optimization. 

Adaptive and 

suitable for 

uncertainty. 

Hybrid AI 

Frameworks 

GA + MILP, 

PSO + MPC, 

EA + surrogate 

Combines AI 

global search 

with exact or 

predictive 

dispatch 

optimization. 

Full set of HRES 

sizing variables. 

Multi-objective 

techno-

economic 

optimization. 

High solution 

quality and 

robustness. 

 

A. Evolutionary Computation Techniques 

Evolutionary computation (EC) techniques, such as Genetic Algorithms (GA), Differential Evolution 

(DE), and Evolution Strategies (ES), are among the most widely used AI-based methods for optimal 

HRES sizing. These algorithms emulate biological evolution through selection, crossover, and mutation 

operators to iteratively improve a population of candidate solutions. In HRES applications, each 

individual typically represents a vector of system capacities, including PV arrays, wind turbines, battery 

energy and power ratings, inverters, and auxiliary generators. EC techniques are particularly effective 

for handling mixed discrete–continuous decision variables and highly nonlinear objective functions. 
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They are frequently coupled with chronological simulation models to evaluate system performance in 

terms of cost, reliability indices (e.g., LPSP or EENS), and emissions [89-92]. However, their main 

drawback lies in high computational demand, especially when long-term, high-resolution simulations 

are required, and in their sensitivity to algorithm parameter tuning. 

B. Multi-Objective Evolutionary Optimization 

Multi-objective evolutionary algorithms (MOEAs), such as NSGA-II, NSGA-III, SPEA2, and MOEA/D, 

extend evolutionary computation to explicitly address conflicting objectives inherent in HRES sizing. 

Instead of producing a single optimal solution, these algorithms generate a Pareto front that represents 

trade-offs among objectives such as net present cost, carbon emissions, and reliability. MOEAs are 

particularly valuable for planning and policy-oriented studies, where decision-makers must balance 

economic, environmental, and technical criteria. Their ability to visualize trade-offs enhances 

transparency and supports informed decision-making. Nevertheless, MOEAs typically incur higher 

computational costs than single-objective approaches, and the quality of the Pareto front depends on 

diversity preservation and constraint-handling strategies [93-96]. 

C. Swarm Intelligence Techniques 

Swarm intelligence methods, including Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), and Artificial Bee Colony (ABC), are inspired by collective behavior observed in natural 

systems. In HRES sizing, these methods explore the solution space through coordinated movements of 

agents influenced by individual and collective experience. Swarm intelligence techniques are relatively 

simple to implement and often exhibit fast convergence in continuous search spaces. They have been 

extensively applied to off-grid and microgrid HRES sizing problems [97-100]. However, premature 

convergence and limited constraint-handling capability can compromise solution quality, particularly 

in problems involving discrete sizing decisions and strict reliability requirements. 

D. Fuzzy and Neuro-Fuzzy Approaches 

Fuzzy logic and neuro-fuzzy systems introduce human-like reasoning into the HRES sizing process by 

representing objectives and constraints using linguistic variables and membership functions. These 

methods are especially useful when design criteria such as “high reliability” or “low cost” are inherently 

imprecise or subjective. Fuzzy-based approaches are often employed as decision-support tools or 

integrated with other optimization methods to rank candidate system configurations [101-103].  

E. Surrogate-Assisted and Machine Learning–Based Optimization 

     Surrogate-assisted optimization combines machine learning models, such as artificial neural 

networks, Gaussian process regression, or gradient-boosting methods, with optimization algorithms to 

reduce computational burden. In HRES sizing, surrogates are trained to approximate expensive 

simulation outputs, such as long-term cost or reliability metrics, enabling faster evaluation of candidate 

solutions [104-106]. This approach significantly accelerates optimization and enables the inclusion of 

high-fidelity component models, such as battery aging or hydrogen system dynamics. However, 

surrogate accuracy and generalization must be carefully validated, as model errors can mislead the 

optimization process if extrapolation occurs beyond the training domain. 

F. Reinforcement Learning–Based Optimization 

Reinforcement learning (RL) techniques, including DQN, PPO, SAC, and DDPG, represent a paradigm 

shift by framing HRES sizing and operation as a sequential decision-making problem. RL agents learn 

optimal policies through interaction with the system environment, receiving rewards based on long-

term performance. RL is particularly suitable for co-design problems that couple sizing with operational 

control under uncertainty. Despite its adaptability and learning capability, RL faces challenges related 

to training stability, reproducibility, and safety assurance, making it less mature for planning-level 

sizing without additional constraint-enforcement mechanisms [107-111]. 

G. Hybrid AI Frameworks 

Hybrid AI frameworks integrate complementary optimization paradigms to exploit their respective 

strengths. Common examples include combining evolutionary algorithms with MILP-based dispatch 

optimization or integrating AI-based global search with model predictive control (MPC). Hybrid 

approaches often achieve superior solution quality and robustness by ensuring both global exploration 

and rigorous constraint satisfaction. Although they introduce additional implementation complexity, 
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such frameworks are increasingly recognized as state-of-the-art solutions for practical HRES sizing 

problems [112-117]. 

     Artificial intelligence–based optimization techniques have emerged as powerful and flexible tools 

for addressing the optimal sizing problem of hybrid renewable energy systems (HRES), particularly in 

scenarios characterized by nonlinear component behavior, high-dimensional decision spaces, multiple 

conflicting objectives, and significant uncertainty in renewable resources and load demand. As 

summarized in the table on AI-based optimization techniques applied to HRES sizing, evolutionary 

computation and swarm intelligence methods provide strong global search capabilities and are widely 

used for techno-economic optimization of system capacities. Multi-objective evolutionary algorithms 

further enhance planning analysis by explicitly capturing trade-offs among cost, reliability, and 

environmental performance. Fuzzy and neuro-fuzzy approaches contribute interpretability and 

facilitate decision-making under vague or qualitative requirements, while surrogate-assisted and 

machine learning–based optimization significantly reduce computational burden and enable the 

inclusion of high-fidelity component models. Reinforcement learning introduces adaptive and 

sequential decision-making capabilities, particularly valuable for co-design of sizing and operation, 

although its practical application requires careful safety and constraint management. Hybrid AI 

frameworks, which integrate complementary techniques, represent a mature and effective direction for 

achieving robust and high-quality solutions.  

4. Hybrid optimization techniques applied to optimal sizing of HRES 

     The optimal sizing of hybrid renewable energy systems (HRES) is inherently a complex planning 

problem that involves the simultaneous determination of multiple interdependent component 

capacities under technical, economic, environmental, and reliability constraints. As HRES 

configurations increasingly incorporate diverse generation technologies, advanced energy storage 

systems, power electronic interfaces, and, in some cases, hydrogen-based subsystems, the resulting 

optimization problem becomes highly nonlinear, nonconvex, and computationally demanding. 

Moreover, the presence of uncertainty in renewable resource availability, load demand, and market 

conditions further complicates the sizing process. 

     While classical and standalone artificial intelligence–based optimization techniques have 

demonstrated effectiveness in addressing certain aspects of HRES sizing, each class exhibits intrinsic 

limitations. Mathematical programming approaches may struggle with nonlinearity and scalability, 

whereas pure AI or metaheuristic methods often lack rigorous constraint enforcement and can be 

computationally inefficient when high-fidelity operational models are employed. To overcome these 

challenges, hybrid optimization techniques have emerged as a powerful and pragmatic solution that 

combines complementary strengths of multiple optimization paradigms within a unified framework. 

     Hybrid optimization techniques integrate global search capabilities, local refinement, exact 

mathematical solvers, learning-based surrogates, and advanced operational control methods to achieve 

robust, high-quality sizing solutions. These approaches are particularly well suited for modern HRES 

planning, where accuracy, feasibility, uncertainty awareness, and computational efficiency must be 

balanced. Table 3 categorizes and compares the main hybrid methodologies. 

 
Table 3. Hybrid optimization techniques applied to optimal sizing of HRES. 

Hybrid 

Technique 

Class 

Typical Hybrid 

Combinations 

Decision 

Variables 

Objective 

Functions 

Constraints / 

Performance 

Indices 

Strengths 

Metaheuristic + 

Mathematical 

Programming 

GA/PSO/NSGA-II + 

MILP/MINLP 

PV, wind, 

battery 

energy/power, 

inverter, DG, 

electrolyzer, H₂ 

tank. 

NPC, LCOE, 

TAC, 

emissions, 

multi-

objective 

Pareto. 

Power balance, 

SOC limits, 

LPSP, EENS, 

ramping. 

High solution 

quality; 

rigorous 

constraint 

satisfaction. 
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Metaheuristic + 

Local Search 

(Memetic) 

GA + hill climbing, 

PSO + Nelder–Mead 

Continuous 

and discrete 

component 

capacities. 

Cost 

minimization 

with 

reliability 

constraints. 

SOC 

feasibility, 

loss-of-load 

limits. 

Improved 

convergence 

and precision. 

Multi-Stage 

Hybrid 

Optimization 

Analytical/graphical 

pre-sizing + GA/PSO 

Bounded PV, 

wind, storage 

capacities. 

NPC/LCOE 

minimization. 

Reliability and 

renewable 

fraction 

targets. 

Reduced 

search space; 

faster 

computation. 

Surrogate-

Assisted 

Hybrid 

Optimization 

ANN/GP/XGBoost + 

GA/PSO/BO 

All HRES 

sizing 

variables. 

Cost and 

reliability 

optimization. 

Learned 

feasibility 

constraints. 

Significant 

computational 

speed-up. 

Decomposition-

Based Hybrid 

Methods 

Benders/Lagrangian 

+ heuristics 

Investment and 

dispatch 

variables. 

NPC/TAC 

minimization. 

Operational 

feasibility, 

reliability 

indices. 

Scalable for 

large systems. 

Stochastic / 

Robust Hybrid 

Optimization 

Scenario-based MILP 

+ NSGA-II 

Capacities with 

scenario-

dependent 

dispatch. 

Expected 

cost, CVaR, 

emissions. 

LOLP, LOLE, 

chance 

constraints. 

Risk-aware 

and reliable 

designs. 

Control–Co-

Design Hybrid 

Optimization 

GA/NSGA-II + 

MPC/RL 

Capacities and 

controller 

parameters. 

Long-term 

cost and 

reliability. 

SOC safety, 

unmet load 

penalties. 

Operationally 

robust 

solutions. 

Optimization + 

MCDM Hybrid 

NSGA-II + 

TOPSIS/VIKOR/AHP 

Pareto-optimal 

capacity sets. 

Multi-

objective 

trade-offs. 

Policy and 

reliability 

constraints. 

Transparent 

final decision-

making. 

 

A. Metaheuristic + Mathematical Programming Hybrid Methods 

     One of the most prominent hybrid frameworks combines metaheuristic algorithms, such as Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), or NSGA-II, with mathematical programming 

techniques, typically mixed-integer linear or nonlinear programming (MILP/MINLP). In this 

architecture, the metaheuristic operates as an outer loop that explores the space of candidate system 

capacities, while the mathematical programming model serves as an inner loop that determines the 

optimal operational dispatch for each candidate sizing. This approach ensures rigorous satisfaction of 

operational constraints, including power balance, state-of-charge dynamics, unit commitment, and 

reliability indices, while retaining strong global exploration capabilities. Consequently, it is widely 

regarded as a benchmark-quality method for HRES sizing. However, the requirement to solve 

numerous MILP/MINLP problems results in substantial computational overhead and increased 

implementation complexity. 

B. Metaheuristic + Local Search (Memetic Optimization) 

     Memetic optimization techniques enhance standard metaheuristics by incorporating local search 

methods, such as hill climbing or gradient-free simplex algorithms, to refine promising candidate 

solutions. In the context of HRES sizing, global exploration identifies promising regions of the solution 

space, after which local optimization improves solution precision and convergence speed. This hybrid 

strategy can significantly improve solution quality compared to standalone metaheuristics. 

Nevertheless, careful balancing between global and local search phases is essential to avoid premature 

convergence or entrapment in local optima, particularly in highly multimodal sizing landscapes. 

C. Multi-Stage Hybrid Optimization Approaches 

     Multi-stage hybrid optimization frameworks decompose the HRES sizing problem into sequential 

phases. Typically, an initial analytical or graphical pre-sizing stage is employed to identify feasible 

capacity bounds based on energy balance or autonomy requirements. This reduced search space is then 

explored using more advanced AI-based or metaheuristic optimization methods. This approach offers 

notable computational efficiency by eliminating infeasible or noncompetitive regions early in the 
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process. However, its effectiveness depends strongly on the quality of the pre-sizing assumptions, and 

overly restrictive bounds may inadvertently exclude the global optimum. 

D. Surrogate-Assisted Hybrid Optimization 

     Surrogate-assisted hybrid optimization integrates machine learning models, such as artificial neural 

networks, Gaussian process regression, or gradient-boosted trees, with optimization algorithms to 

approximate expensive objective and constraint evaluations. In HRES sizing, surrogates are trained on 

simulation or dispatch results and subsequently used to accelerate the optimization process. This hybrid 

approach enables the inclusion of high-fidelity models, such as battery degradation or hydrogen system 

thermodynamics, which would otherwise be computationally prohibitive. The principal limitation lies 

in surrogate accuracy and generalization, necessitating rigorous validation and adaptive sampling 

strategies. 

E. Decomposition-Based Hybrid Methods 

     Decomposition-based hybrid techniques apply mathematical decomposition principles, such as 

Benders decomposition or Lagrangian relaxation, to separate long-term investment decisions from 

short-term operational optimization. Heuristic or AI-based methods are often employed to accelerate 

convergence or manage integrality in the investment problem. This structure enhances scalability and 

interpretability for large-scale or long-horizon HRES planning problems. However, formulation 

complexity and the need for careful coordination between subproblems present significant 

implementation challenges. 

F. Stochastic and Robust Hybrid Optimization 

     Hybrid stochastic and robust optimization frameworks combine AI-based search with uncertainty-

aware mathematical programming. Scenario-based stochastic MILP models or robust optimization 

formulations are embedded within metaheuristic or evolutionary search processes to produce risk-

aware sizing solutions. These approaches explicitly address variability in renewable generation, load 

demand, and economic parameters, leading to more reliable and resilient HRES designs. The main 

drawback is the substantial computational burden associated with scenario explosion and the need for 

scenario reduction or uncertainty set calibration. 

G. Control–Co-Design Hybrid Optimization 

     Control–co-design hybrid methods integrate sizing optimization with advanced operational control 

strategies, such as model predictive control (MPC) or reinforcement learning (RL). Candidate system 

sizes are evaluated under realistic, closed-loop operational policies, ensuring that the selected design 

performs well under real-time constraints and forecast errors. this hybrid paradigm yields operationally 

robust designs but requires extensive simulation or training effort and raises challenges related to 

reproducibility and fair benchmarking. 

H. Optimization + Multi-Criteria Decision-Making (MCDM) Hybrids 

     In optimization-MCDM hybrid approaches, multi-objective optimization techniques (e.g., NSGA-II) 

are first used to generate a Pareto-optimal set of HRES designs. Subsequently, decision-making tools 

such as TOPSIS, VIKOR, or AHP are applied to select a final design based on stakeholder preferences 

or policy priorities. 

     As summarized in the table on hybrid optimization techniques applied to HRES sizing, frameworks 

that combine global search algorithms with exact dispatch optimization ensure both solution optimality 

and rigorous constraint satisfaction. Memetic and multi-stage hybrid methods enhance convergence 

speed and computational efficiency, while surrogate-assisted and decomposition-based approaches 

enable scalable optimization with high-fidelity system models. Stochastic and robust hybrid techniques 

further improve design reliability by explicitly accounting for uncertainty, and control–co-design 

hybrids ensure that sizing decisions remain valid under realistic operational conditions. 

5. Recent trend on Artificial Intelligence–Based Optimization Algorithms 

     In recent years, a substantial body of work has introduced new population-based optimization 

algorithms inspired by biological, physical, and socio-political processes. These methods are typically 

designed to enhance global search capability, mitigate premature convergence, and improve the 
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exploration–exploitation trade-off in highly nonlinear, nonconvex, and multimodal optimization 

landscapes as presented in Figure 3. Nevertheless, the practical value of newly proposed optimizers 

depends not only on conceptual novelty but also on rigorous benchmarking, robust parameter 

sensitivity analysis, and validation on application-driven problems (e.g., HRES sizing, controller tuning, 

and constrained engineering design). The following subsections summarize a set of recently developed 

algorithms and their reported applications. 

 
Figure 3. Recent trend on AI. 

 

A. Black Widow Optimization Algorithm 

Black Widow Optimization (BWO) is a population-based metaheuristic inspired by the lifecycle and 

mating behavior of black widow spiders, particularly the procreation–cannibalism dynamics observed 

among spiderlings. The algorithm is commonly governed by three principal control parameters: (i) 

procreation (reproduction) rate, (ii) cannibalism rate, and (iii) mutation rate. The procreation percentage 

(PP) determines the fraction of individuals permitted to reproduce, thereby improving population 

diversity and increasing the likelihood of exploring the search space effectively. Cannibalism is typically 

modeled in multiple stages to eliminate inferior individuals early, which can accelerate convergence. 

Mutation is then used to preserve a balance between exploration and exploitation by introducing 

controlled perturbations into candidate solutions. Appropriate tuning of these parameters is essential 

to avoid stagnation and to sustain search diversity, particularly in complex, high-dimensional problems. 

In terms of applications, BWO has been reported for controller design in standalone hybrid renewable 

energy systems integrating wind, tidal, and wave sources.  

B. Sailfish Optimizer 

     The Sailfish Optimizer (SFO) is inspired by the cooperative hunting strategy of sailfish, where 

predator–prey interactions are modeled through two populations: predators (sailfish) and prey 

(sardines). In the algorithmic formulation, sailfish represent candidate solutions (positions in the search 

space), while sardines contribute to diversification by modeling prey dynamics and collective defense 

behaviors. The method alternates attack strategies to disrupt prey formations, updates prey movements 

across the search space, and allows predators to “capture” prey by relocating toward fitter positions.  

     Typically, the best sailfish solution and the most “injured” sardine (a proxy for vulnerable solutions) 

are retained to guide exploitation, implying that the elite solutions can significantly influence 

convergence behavior and overall performance. SFO is often reported to offer rapid convergence and 

competitive global search performance, especially for large-scale problems, due to its structured balance 

between intensification (predators) and diversification (prey). To strengthen exploitation, a hybrid 

adaptive hill-climbing Binary Sailfish Optimizer has been proposed and applied to feature selection 

problems using standard UCI datasets, with comparative evaluation against multiple AI-based feature 

selection techniques. 
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C. Deer Hunting Algorithm 

     The Deer Hunting Algorithm (DHA) is a human-inspired optimization method that emulates 

hunting strategies by considering factors such as wind direction and prey positioning. The algorithm 

initializes a population of hunters and designates a leader, while the remaining hunters (successors) are 

positioned relative to the leader and iteratively updated using coefficient vectors designed to move the 

population toward promising regions of the search space. The method may incorporate angular updates 

that relate the wind angle to the prey visualization angle, supporting exploration by enabling successors 

to adjust their search trajectories. 

     DHA has been validated on benchmark suites and constrained engineering design problems, 

demonstrating competitive performance against established optimizers. However, a commonly noted 

limitation is its susceptibility to convergence issues due to reliance on multiple random parameters, 

which can increase variability across runs and complicate parameter tuning. In an applied study, an 

improved deer hunting approach was used to analyze the economic performance of a combined solar 

chimney power plant integrated with SOEC, SOFC, and HRSG for residential power supply in Yazd, 

Iran, with comparative results reported against GA and PSO. 

D. Tunicate Swarm Algorithm 

     The Tunicate Swarm Algorithm (TSA) is a bio-inspired optimizer motivated by the swarming 

behaviors of marine tunicates and their jet propulsion mechanisms. In the mathematical model, 

candidate solutions (search agents) evolve under three key behavioral conditions: (i) avoiding 

collisions/conflicts with neighboring agents through a position update vector that may account for social 

and environmental forces, (ii) moving toward the best neighboring solution to promote exploitation, 

and (iii) converging toward the globally best search agent to enhance intensification. Typically, elite 

solutions are preserved to emulate collective swarm intelligence, with remaining agents updating 

positions toward the best-performing candidates. An improved TSA has been introduced for 

simultaneous allocation and control of capacitor banks (CBs), distributed generators (DGs), and 

distribution network reconfiguration (DNR) to reduce power losses and enhance service quality [256]. 

The method was tested on standard 33-bus, 69-bus, and large-scale 119-bus radial distribution networks 

under varying demand scenarios and compared against conventional TSA and other approaches such 

as PSO, GA, EA, WCA, BFOA, and CSA. 

E. Artificial Electric Field Algorithm 

     The Artificial Electric Field Algorithm (AEFA) is grounded in Coulomb’s law of electrostatic 

attraction and repulsion. In AEFA, candidate solutions are treated as charged particles whose 

interactions are driven by electrostatic forces. The “best” particle (with the highest charge, 

corresponding to the best fitness) tends to move more conservatively, while other particles update their 

positions and velocities based on personal best and global best histories, rendering AEFA a memory-

based optimizer akin to velocity-position update schemes. AEFA has been evaluated on real-parameter, 

single-objective optimization benchmarks, with reported competitive performance relative to several 

state-of-the-art algorithms. Furthermore, stability and convergence behavior have been examined 

through theoretical analysis to identify conditions under which particle motion remains stable and 

convergent. 

F. Water Strider Algorithm 

     The Water Strider Algorithm (WSA) models the lifecycle and behavior of water strider insects, 

incorporating territoriality, mating dynamics, ripple-based communication, foraging behavior, and 

succession mechanisms. The algorithm begins by initializing a population over a conceptual lake 

surface and evaluating fitness. The population is then partitioned into territories, typically assigning 

stronger individuals to more advantageous regions. A keystone male’s position is updated through 

signals influenced by female response dynamics. Because mating can be energy-intensive, the keystone 

then transitions to a foraging phase to locate food resources; failure to locate food leads to replacement 

by a new larva whose position is randomly initialized within the territory. WSA has been assessed on 

numerical benchmark functions and engineering design problems, with reported results indicating 
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improved performance over several comparator algorithms. The inclusion of territorial structuring and 

replacement dynamics is intended to preserve diversity while supporting localized intensification. 

G. Political Optimizer 

     The Political Optimizer (PO) is a socio-inspired metaheuristic that maps a multi-stage political 

process into an optimization framework. The algorithm typically models five phases: constituency 

allocation, party formation, election campaign, inter-party election, and parliamentary affairs. During 

initialization, the population is partitioned into political parties and constituencies. In the campaign 

phase, position update rules are formulated to reflect learning from previous elections, where party 

members and candidates adjust their positions relative to party leaders and constituency winners, 

respectively. Inter-party elections are simulated per constituency to select winners, and the 

parliamentary phase aggregates winners across parties to form a governing coalition. A distinctive 

feature of PO is that each solution may assume dual roles (party member and candidate), and position 

updates are guided by two elite references (party leader and constituency winner), rather than a single 

global best. This dual-elite interaction aims to diversify guidance signals and improve convergence 

robustness. The method has been evaluated on multiple optimization problems against a broad set of 

benchmark algorithms, reporting competitive performance. 

6. Software Tools  

     The optimal sizing of hybrid renewable energy systems (HRES) is a multidisciplinary problem that 

requires the integrated consideration of techno-economic performance, system reliability, 

environmental impact, and operational feasibility under variable renewable resources and load 

demand. As HRES configurations become more complex, incorporating diverse generation 

technologies, energy storage systems, power electronic interfaces, and, in some cases, hydrogen-based 

subsystems, the reliance on analytical or purely theoretical approaches alone becomes insufficient. 

Consequently, software tools have become indispensable in HRES sizing studies, providing structured 

environments for modeling, simulation, optimization, and decision support as highlighted in Figure 4. 

 
Figure 4. Software tools applied to optimal sizing of HRES. 

 

     Software tools applied to HRES sizing range from commercial techno-economic platforms and 

optimization-driven planning tools to power-system simulation environments and algebraic modeling 

frameworks. These tools differ significantly in terms of modeling depth, optimization capability, 

treatment of uncertainty, and ability to incorporate electrical network constraints. Their adoption has 
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enabled researchers and practitioners to evaluate a wide range of design scenarios, perform sensitivity 

and uncertainty analyses, and derive practical, implementable system configurations. 

A. Commercial techno-economic sizing platforms 

Commercial platforms are frequently used for rapid techno-economic assessment and optimal sizing of 

HRES configurations by combining component libraries (PV, wind, batteries, diesel generators, 

converters, and grid interaction) with built-in dispatch simulation and economic evaluation. HOMER / 

HOMER Pro is the most common example, widely adopted for least-cost sizing and feasibility analysis 

of off-grid and grid-connected microgrids, enabling comparative scenario studies across technology 

mixes and financial assumptions.  

B. Optimization-driven microgrid planning tools  

Optimization-centric planning tools perform HRES sizing by explicitly solving an optimization model 

(often MILP-based) that co-optimizes system capacities and dispatch to minimize cost and/or achieve 

resilience and emissions targets. NREL’s REopt® is a prominent example: it is designed to optimize 

DER system sizes and dispatch for buildings, campuses, and microgrids, and it explicitly supports 

resilience analysis such as sustaining critical loads during outages. DER-CAM (LBNL) is another well-

established decision-support tool for determining optimal DER investments in buildings and multi-

energy microgrids, with extensive documentation and tutorials supporting structured workflows. 

C. Power-system simulation environments coupled with external optimizers  

When HRES sizing must reflect electrical network constraints (e.g., voltage limits, feeder losses, phase 

imbalance, hosting capacity, protection constraints), researchers commonly rely on detailed 

distribution-system simulators and then couple them with external optimization routines 

(MILP/MINLP or metaheuristics). OpenDSS is widely used as an open-source distribution simulator for 

DER and microgrid studies, and it is often paired with MATLAB or Python-based optimization to 

perform network-constrained planning and sizing. In this workflow, the optimizer proposes candidate 

HRES capacities, while the simulator validates feasibility and computes network performance metrics 

(losses, voltage profiles, constraint violations), enabling sizing decisions that are electrically realistic 

rather than purely energy-balance-based. 

D. Algebraic modeling languages and optimization libraries  

For publication-grade or project-specific sizing studies requiring full flexibility in objectives and 

constraints (e.g., explicit LPSP/EENS limits, degradation-aware storage modeling, emissions caps, 

market participation, hydrogen subsystem coupling), HRES sizing is frequently implemented in 

algebraic modeling frameworks. In these settings, the system is formulated using an optimization 

modeling language (e.g., in GAMS-style workflows for DER-CAM implementations and related 

research) and solved using mathematical programming solvers; this approach supports transparent 

reporting of decision variables, constraints, and optimality gaps and is particularly effective for 

MILP/MINLP formulations in co-optimized sizing and dispatch. 

     Software tools play a central role in the optimal sizing of hybrid renewable energy systems by 

bridging the gap between theoretical optimization models and practical system implementation. 

Commercial techno-economic platforms facilitate rapid feasibility assessment and comparative 

analysis, while optimization-centric tools enable rigorous co-optimization of system capacities and 

dispatch under economic, reliability, and resilience objectives. Power-system simulation environments 

further enhance realism by incorporating network-level constraints, and algebraic modeling 

frameworks provide maximum flexibility for custom, publication-grade HRES formulations. No single 

software tool is universally optimal for all HRES sizing problems. Instead, tool selection should be 

guided by system scale, required modeling fidelity, uncertainty considerations, and the specific 

objectives of the study. In many advanced applications, hybrid workflows that combine multiple 

software tools, such as optimization solvers with power-system simulators, offer the most robust and 

credible solutions. As HRES planning continues to evolve toward higher renewable penetration and 

increased system intelligence, the strategic use of appropriate software tools can remain a key enabler 

of reliable, cost-effective, and sustainable energy system design. 
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7. Conclusion  

     This article reviewed the optimization of Hybrid Renewable Energy Systems (HRES) from a unified 
planning perspective, emphasizing that credible HRES design is fundamentally an integrated sizing-

and-dispatch problem conducted under techno-economic, environmental, and reliability constraints. 
The discussion established the motivation for HRES optimization in the context of renewable 

intermittency, decarbonization requirements, and the need for resilient energy supply, and it framed 
optimization as the principal mechanism for balancing competing objectives such as minimizing 
lifecycle cost (e.g., NPC/LCOE), reducing emissions, and ensuring adequacy metrics (e.g., LPSP/EENS). 

Across the reviewed literature, it is evident that the choice of optimization paradigm must be matched 
to model fidelity, uncertainty level, and decision context (off-grid versus grid-connected, resilience-

driven versus cost-driven design), rather than selected solely based on algorithmic novelty. 
     With respect to classical optimization methods, the review highlighted their continuing importance 
due to transparency, reproducibility, and rigorous constraint representation. Numerical programming 

approaches (LP/MILP/MINLP) remain indispensable for co-optimizing capacity investment and 
operational dispatch when the system can be formulated with sufficient tractability, while analytical, 

graphical, iterative, and probabilistic methods provide valuable first-cut feasibility assessment, 
sensitivity insights, and baseline benchmarks. Nonetheless, classical methods can become restrictive 
under strong nonconvexities, detailed component physics (e.g., electrolyzer part-load efficiency, battery 

degradation), and long-horizon high-resolution time series, motivating the adoption of more flexible 
solution strategies. 

     The article then examined AI-based optimization techniques, which have become prevalent because 
they can navigate nonconvex and mixed-integer design spaces and readily integrate simulation-based 
evaluations. Evolutionary computation and swarm intelligence methods are widely used for single- and 

multi-objective sizing, and multi-objective evolutionary algorithms provide explicit Pareto fronts that 
support decision-making across cost–emissions, reliability trade-offs. However, the review emphasized 

that AI-based methods require disciplined constraint handling, statistical validation, and transparent 
reporting of computational budgets to avoid misleading conclusions. Building on this, hybrid 
optimization techniques were identified as a mature and practically effective direction, particularly 

frameworks that couple global metaheuristic search with exact dispatch solvers (MILP/MINLP), 
surrogate-assisted learning for computational acceleration, decomposition strategies for scalability, and 

control–co-design approaches that evaluate designs under realistic closed-loop operation. These hybrid 
structures frequently deliver superior feasibility, robustness, and solution quality compared with 
standalone approaches, albeit with higher implementation complexity. 

     Recent advances were further characterized by the rapid emergence of new AI optimizers and their 
variants, often motivated by specific exploration–exploitation mechanisms. While many of these 

algorithms report promising benchmark performance, the review underscored that their research value 
in HRES sizing depends on standardized comparisons against strong baselines, sensitivity analysis of 
algorithmic parameters, ablation of proposed operators, and evaluation under uncertainty and realistic 

operational constraints. Finally, the article demonstrated that software tools are central enablers of 
HRES optimization, ranging from packaged techno-economic sizing platforms to solver-centric 

modeling environments and power-system simulators coupled with external optimizers for network-
constrained planning. Best practice increasingly favors integrated toolchains that combine data 
processing, high-fidelity simulation, solver-based dispatch, and decision analysis, ensuring that 

optimized designs are both technically implementable and economically defensible. 
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