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Abstract: The utilization of fossil fuels has played a substantial role in climate change and the progression of global 

warming. Consequently, there is an increasing demand for environmentally sustainable and renewable alternatives 

to address these issues. It is widely acknowledged that renewable energy resources represent the optimal choice 

for replacing fossil fuels in the foreseeable future. In this context, mechanical energy storage systems (MESS) 

continue to present substantial challenges to smart power grids (PGs). The MESS model can be purposefully 

designed to offer exceptional flexibility to smart PGs engaged in the intricate task of balancing energy resources 

and demand loads. MESS not only holds the potential for significant economic advantages but also ensures the 

reliability of smart PG supplies while delivering sustainability and maintaining a high level of power quality. 

Furthermore, it enables electrical grids to fully harness the benefits of a potent combination of distributed renewable 

energy resources (RER). The primary goal of this article is to facilitate the adoption of innovative MESS technologies 

that synergize with improved efficiency, energy conservation, and rapid response capabilities. The integration 

empowers smart PG to effectively employ intelligent operations management techniques. Thus, the utilization of 

artificial intelligence (AI) techniques in the smart PG domain is progressively manifesting its importance including 

Expert Systems, Supervised learning, Supervised learning, Reinforcement Learning, and Ensemble methods. This 

comprehensive survey provides a systematic analysis of the existing research endeavors employing various 

prevalent AI techniques in load forecasting, PG stability assessment, fault detection, and addressing security 

concerns within smart PG. Additionally, it delineates forthcoming research challenges that necessitate attention to 

fully actualize AI techniques in the creation of authentically smart PG systems. Ultimately, this survey underscores 

the potential for applying AI to tackle issues within smart PG systems, underscoring that the incorporation of AI 

techniques has the potential to significantly elevate and enhance the reliability and resilience of these smart PG 

systems. 

 

Keywords: Compressed-Air Energy Storage, Pumped Hydro Energy Storage Systems, Flywheel Energy Storage 

Systems; Artificial Intelligence Techniques; Smart Power Grids. 

1. Introduction 

The injection of carbon dioxide (CO2) into the Earth's subsurface has been a practiced technique since 

the 1970s, and the establishment of dedicated CO2 storage, where the primary intent is the containment 
of CO2 rather than its utilization for enhanced oil recovery, has been underway since 1996. Presently, 
there exist seven dedicated CO2 storage sites on a commercial scale, with over a hundred others in 

various stages of development. In the IEA Net Zero Emissions by 2050 Scenario, commonly referred to 
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as the 'Net Zero Scenario' an impressive 5.9 gigatons (Gt) of CO2 are envisioned to be captured and 

securely stored by the year 2050. Achieving this target necessitates a substantial amplification of 
dedicated CO2 storage infrastructure, considering that the current annual injection of CO2 into 

dedicated storage facilities amounts to approximately 10 million tons (Mt) per year [1-3]. 
Energy storage systems (ESSs) are undergoing rapid expansion within electricity systems 

worldwide, driven by countries' efforts to enhance their energy security [4,5]. Electrical utilities are 

increasingly relying on the effective deployment of flexible resources, including robust grid 
infrastructure, interconnections, demand-side measures, affordable energy storage solutions, and 

dispatchable power supplies [6]. Consequently, numerous nations have adeptly and securely 
incorporated significant portions of variable renewable energy sources (VRE) into their electricity 
generation portfolios, marking a pivotal milestone in the pursuit of sustainable energy practices. 

Increasing demand for energy and concerns about climate change stimulate the growth in VRE. 
According to the IRENA's statistics [7], the world's total installed capacity of renewable energy 

increased from 1,223,533 MW in 2010 to 2,532,866 MW in 2019, and over 80% of the world's electricity 
could be supplied by renewable sources by 2050.  

Furthermore, the incorporation of ESS has ushered in a swift, user-friendly, and highly efficient 

solution to address the challenges of integrating RER into smart power grids [8,9]. Within the realm of 
energy storage, electrical energy undergoes conversion into alternative forms that can be stored for 

future utilization. To delve deeper into this subject, it's essential to note that ESS can be classified in 
various ways by the nature of the stored energy (electrical, mechanical, chemical, thermal, etc.), the 
storage duration (long-term or short-term), or other pertinent criteria such as capacity cost, efficiency, 

and environmental impact [10-14]. Figure 1, for instance, categorizes energy storage based on the type 
of energy they store. 

 

Figure 1. Categorization of ESS based on the type of energy they store. 

Mechanical Energy storage system, particularly Pumped Hydro Storage system (PHSS), boasts a rich 
historical legacy as a crucial tool for grid dispatching and peak load management. In the past, coal and 

gas reserves were the primary forms of storage used to facilitate the flexible dispatch of energy. 
However, as technological advancements unfolded, a diverse array of viable energy storage solutions 
emerged within the market. In this context, the China Energy Storage Alliance disclosed that China had 

already operationalized 118 energy storage projects. Collectively, these projects contributed to an 
installed capacity of 105.5 MW, showcasing an impressive annual growth rate of 110% from 2010 to 

2015. This remarkable growth trajectory indicates a projected capacity of up to 24.2 GW (excluding PHS) 
and 40 GW (inclusive of PHS) by the year 2020 [15]. 

Mechanical energy storage system (MESS) has grown in importance in light of recent CAES concepts 

and compressed air storage (CAS) options, meticulously assessing their merits and limitations [16]. The 
proposed model [17] is formulated as a mixed-integer nonlinear problem, which is solved by the CPLEX 

solver of the GAMS software. Employing the presented model in the 6-bus test system demonstrates 
the efficacy of the proposed model. Simulation results show that considering restrictions on 
reserve deliverability across multiple hours lessens the total reserve by 22.75 MW and increases the 

operation cost by $438.26. In this regard, Flywheel energy storage systems (FESS) are increasingly being 
considered as a promising alternative to electrochemical batteries for power grid (PG) utility 

applications. therefore, focuses on developing a bottom-up techno-economic model to design system 
components and to evaluate the total investment cost and levelized cost of storage of flywheels with a 
capacity of 20 MW/5 MWh for frequency regulation. Two rotor configurations were considered: 

•Mechnical ESS

•Thermal ESS

•Chemical ESS

•Electrical ESS

Enegy Storage 
System 

(ESS)
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composite rotor flywheel and steel rotor flywheel [18]. The total investment costs of the composite rotor 

and steel rotor FESSs are $25.88 million and $18.28 million, respectively. The corresponding levelized 
costs of storage are $189.94/MWh and $146.41/MWh. The model results are highly sensitive to the cost 

of the rotor material, discount rate, factor of safety, number of cycles per year, and tensile strength of 
the rotor material. The ranges obtained in the uncertainty analysis for the levelized cost of storage are 
$122.08-$253.52/MWh and $108.63-$187.64/MWh for the composite rotor and steel rotor flywheel 

storage systems, respectively. 
The MESS is intended to provide an extremely flexible facility to the electrical grids that engage in 

harmonizing energy resources and demand loads in order economic impact, and secure electric-power 
supplies to effectively deliver sustainable and high power quality. Moreover, the electrical grids can 
begin to derive full benefits from a powerful combination of distributed renewable energy resources 

(RER). The contribution of this article [19] aims to involve implementing innovative MESS technologies 
that work hand in hand with greater efficiency, efficiency, and rapid response to integrate electrical 

grids cope with intelligent techniques such as particle swarm optimization (PSO), artificial neural 
network (ANN), and fuzzy logic controller (FLC). These intelligent controllers are being actively 
considered to regulate the power from MESS technologies to integrate within the PGs. 

The integration of Mechanical energy storage systems (MESS), such as Compressed air energy 
storage (CAES), Flywheel energy storage system (FESS), and Pumped hydro energy storage systems 

(PHESS) with smart power grids (PGs), offers a transformative solution to address the challenges of 
renewable energy intermittency and grid management complexities. MESS enables energy generation 
and consumption decoupling, ensuring economic savings, secure power supplies, and high power 

quality. Simultaneously, the integration of Artificial Intelligence (AI) techniques, including Expert 
Systems, Supervised learning, Supervised learning, Reinforcement Learning, and Ensemble methods, 

empowers smart PGs with data-driven decision-making capabilities, facilitating accurate load 
forecasting, grid stability assessment, fault detection, and cybersecurity. However, technical challenges 
such as data management, security, and AI algorithm transparency must be addressed. The synergy 

between MESS and AI holds great promise for optimizing PG operations, reducing costs, and enhancing 
reliability, with future research focusing on algorithm interpretability and the prediction of consumer 

behavior for revolutionizing demand-side management. While the rest of the article is structured as 
follows: the integration of mechanical energy storage system with the smart PGs listed in Section 2. The 
artificial intelligence techniques for smart PG is presented in Section 3. Section 4 investigates the 

technical challenges of artificial intelligence in smart PG. The directions and prospects of artificial 
intelligence in smart PGs are demonstrated in Section 5. Finally, Section 6 deals with the conclusion.   

2. Integration of MESS with the Smart PGs  

To establish the context for the subsequent sections, it is imperative to categorize the various types 

of Mechanical Energy Storage Systems (MESS) based on their fundamental operational principles. They 

encompass Compressed-Air Energy Storage (CAES), Pumped Hydro Energy Storage Systems (PHESS), 

and Flywheel Energy Storage Systems (FESS), as illustrated in Figure 2.  

 

Figure 2. Classification of MESS. 

Mechanical Energy Storage System 

Compressed-Air Flywheel Pumped Hydro
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A. Compressed-Air Energy Storage  

The foundational principles of energy storage via compressed air can be traced back to the 1940s 

when F.W. Gay submitted a pioneering project titled 'Means for Storing Fluids for Power Generation.' 

During that era, Mr. Gay was granted a patent for this innovation by the United States Patent Office. 

Over subsequent decades, the United States and Germany have operated two traditional Compressed-

Air Energy Storage (CAES) plants, boasting power generation capacities of 110.0 MW and 321.0 MW, 

respectively. Until the late 1960s, Germany led the way in advancing CAES technology in a specific 

region, harnessing the immense potential of underground salt domes to achieve this objective. 

Eventually, the utility company Nordwest-Deutsche Kraftwerke (NKW) determined that the Energy 

Transfer Storage System should be established in Huntorf [20-22]. 

Subsequently, Brown, Boveri & Company (BBC) designed the turbine air storage peaking plant 
technology, which served a crucial role in achieving peak-load capacity [23]. The United States 

Department of Energy (DOE) embarked on a comprehensive CAES (Compressed-Air Energy Storage) 
reform program, which unfolded at the Pacific Northwest National Laboratory during the late 1970s 
and extended into the early 1980s [24,25]. This scientific endeavor revolved around two primary 

objectives: (i) elevating the stability standards governing CAES operational requisites and (ii) exploring 
the viability of second-generation CAES, famously known as adiabatic CAES (A-CAES), with the 

overarching goal of curbing the consumption of petroleum-based fuels for combustion. Figure 3 
illustrates various CAES concepts, distinguished by their idealized change of state, encompassing D-
iabatic D-CAES, adiabatic A-CAES, and isothermal I-CAES.  

 

 

Figure 3. CAES concepts are classified by their idealized change of state: D (diabatic), A (adiabatic), I 

(isothermal)-CAES).  

As a consequence, in the United States, the Electric Power Research Institute (EPRI) assumes full 
responsibility for the advancement of second-generation CAES technologies, including adiabatic CAES, 

isothermal CAES (I-CAES), and hybrid CAES systems. Figure 5 elucidates the architectural framework 
of an isothermal CAES system integrated with a wind turbine. Notably, the Pacific Northwest National 
Laboratory (USA) has been actively investigating A-CAES as a promising technology, ideally suited for 

various applications. Simultaneously, the EPRI identifies the hybrid CAES plant coupled with a thermal 
energy storage system (T-ESS) as the most promising second-generation solution. Grid-scale electrical 

energy storage primarily sources its power from CAES systems with a capacity of up to 400.00 MW. 
Table 1, shows the summarized recent studies in CAES. 
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Table 1. The summarized recent studies in CAES 

Ref. Year Type of 

MESS 

Summarized 

[26] 2023 CAES  A comparison between the daily and weekly circulation periods in the 

dome-shaped and horizontal aquifers showed that the daily circulation 

has an efficiency advantage at the same energy storage scale, and the 

energy recovery efficiency of the horizontal aquifer in the weekly 

circulation can reach approximately 74% of that of the dome-shaped 

aquifer.  

 A constant flow rate injection/production gas daily cycle mode was 

investigated, and the results showed that this mode has higher energy 

recovery efficiency than the constant pressure cycle mode, and the 

horizontal aquifer can reach 88.39% of the efficiency of the dome-

shaped aquifer. 

[27] 2023 CAES  The exergy analysis of the system demonstrated that the solar 

subsystem and SRC had the highest contributions to total exergy 

destruction. A comparative case study was conducted on Isfahan, 

Bandar Abbas, Mashhad, Semnan, and Zanjan in Iran to evaluate the 

performance of the proposed system at different ambient temperatures 

and irradiance levels during the year.  

  The contradictory objective functions of the system included exergy 

efficiency maximization and cost rate minimization. The optimal 

Exergy round trip efficiency and cost rate were found to be 29.25% and 

714.25 ($/h), respectively. 

[28] 2023 CAES  The improvement in flexibility was quantified by the additional profits 

gained from the integration. Polish day-ahead electricity prices were 

used as a measure of remunerating flexibility. Two models were 

developed in the Python computer programming language: a 

thermodynamic one and an economic one.  

 The former was built without the use of flowsheeting software or 

purpose-built industry-specific tool. The latter was implemented 

within the frame of the PuLP library and solved using its default solver 

(CBC). Utilizing mixed integer linear programming (MILP) optimal 

generation schedules and maximum profits were found for three cases: 

an independent operation of the CCGT, an integrated CCGT-CAES 

plant, and an integrated CCGT-ES plant with 81% storage efficiency.  

[29] 2023 CAES  This paper discusses the design of a heat storage unit with 

integrated heat exchangers (TES + HX), which is intended to work in a 

CAES system.  

 A medium-scale, medium-duration CAES system (250 kW/1MWh) is 

used as a case study. The heat storage subsystem comprises a packed-

bed thermal store, three air-to-air heat exchangers, and an ambient 

pressure air blower. Combined, this subsystem has an approximate cost 

of £147k and achieves an efficiency of ∼89 %, which translates into a 

levelized cost of ∼48.5 £/MWh.  

 An integrated TES + HX unit can achieve a levelized cost of ∼35 

£/MWh. The unit has an estimated cost of £38.5k and achieves an 

overall roundtrip exergy efficiency of ∼91.8 %.  

[30]  2023 CAES  The objective is to deal with power failures and interruptions in power 

grids that have a high level of renewable resource penetration while 

reducing the emissions produced by CAES systems.  

 The suggested system is then optimized using the gray wolf algorithm 

to determine the optimal way to balance thermodynamic performance 

with economic and environmental factors. This system's exergy round 

trip efficiency is 71.03%, its total cost is 34.07 $/h, and its pollution rate 

is 0.184 kg/kWh 

https://www.sciencedirect.com/topics/engineering/exergy-analysis
https://www.sciencedirect.com/topics/engineering/exergy-destruction
https://www.sciencedirect.com/topics/engineering/exergy-destruction
https://www.sciencedirect.com/topics/engineering/exergy-efficiency
https://www.sciencedirect.com/topics/engineering/exergy-efficiency
https://www.sciencedirect.com/topics/engineering/round-trip-efficiency
https://www.sciencedirect.com/topics/engineering/mixed-integer-linear-programming
https://www.sciencedirect.com/topics/engineering/heat-exchanger
https://www.sciencedirect.com/topics/engineering/storage-subsystem
https://www.sciencedirect.com/topics/engineering/ambient-pressure
https://www.sciencedirect.com/topics/engineering/ambient-pressure
https://www.sciencedirect.com/topics/engineering/roundtrip
https://www.sciencedirect.com/topics/engineering/exergy-efficiency
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Much of the current literature [31] on CAES pays particular attention to the total energy demands. 

Moreover, the present article indicates that the compressed air as a part of the Brayton cycle covers the 
total energy demands of hydrogen compression and cooling. In terms of storage efficiencies, the energy 

and exergy efficiencies for the charging period are found to be 72.65% and 71.52%, while they become 
35.3% and 35.24% for the discharging period, respectively. The overall system energy and exergy 
efficiencies are calculated to be 35.00% and 34.38% for a period of 12 h charging and a period of 6 h 

discharging. In addition to that, more recent attention [32] has centered on the provision of A-CAES 
based on the actual engineering of power plants, real, unavoidable, and hybrid thermodynamic cycles, 

and conventional and advanced exergy analyses. In this regard, the avoidable exergy destruction 
indicated the highest potential for improvement of the third-stage heat exchanger (HEX3) contributing 
to 13.15 % of the total avoidable exergy destruction of the system; therefore, HEX3 has the highest 

optimization value. In addition, the second-stage heat exchanger (HEX2) and first-stage heat exchanger 
(HEX1) also exhibited higher potential for improvement. 

Research [33] in this area has shown that the system makes full use of low-grade compression heat 
while consuming the generated carbon monoxide to output hydrogen to the outside. By constructing a 
systematic thermodynamic model of the system, the effects of the key parameters on the system 

performance were investigated in depth. The article also showed that the energy efficiency and exergy 
efficiency of the system can reach 85.71 % and 80.94 %, respectively. When the suction pressure of the 

water-air coexisting tank is increased from 5 atm to 20 atm, the air storage mass increases by 33.96 %. 
At the cracking temperature of 708 K, the energy storage density can reach 12.37 kWh/m3, the hydrogen 
production mass is 3113.38 kg, and the relative energy saving rate is 54.38 %.  

In this direction, recent research [34] has demonstrated that the thermodynamic model and wellbore 
model are constructed to evaluate the performance of the proposed system based on CAES. Besides that, 

the numerical results illustrated that the production temperature increases with the augment of the 
mass flow rate, but the increase of the recharge pressure has no obvious effect on the production 
temperature. In addition, the round trip efficiency of the system fluctuates between 48.59%∼and 54.88%, 

which is much better than that of the traditional compressed air energy storage system (42%). 
Existing research [35] recognizes the critical role played by integrating water-based carbon capture 

with an adiabatic compressed air energy storage system. The flue gas with a higher carbon dioxide 
concentration is employed as the working fluid of the adiabatic compressed air energy storage system 
(A-CAESS), and the flue gas's total pressure is raised by the compression train. Moreover, 

thermodynamic analysis was evaluated using steady-state mathematical models and thermodynamic 
laws. The calculated results of this article showed that the energy consumption of carbon capture is 

354.23 kWh/t, which is significantly lower than amine-based capture technology (about 1000 kWh/t).  

B. flywheel energy storage system (FESS) 

Flywheel energy storage system (FESS) takes advantage of the possibility to store electrical energy as 

kinetic energy [36]. FESSs use electrical energy to accelerate or decelerate the flywheel, that is, the stored 

energy is transferred to or from the flywheel through an integrated motor/generator and power 

converter [37]. The rotating speed of the flywheel determines the amount of energy stored. Figure 4, 

presents the most critical mechanical part of the FESS, which is the bearing. Table 2, discusses in detail 

the suitable FESS. The overall bearings of the FESS are divided into two types: (i) mechanical bearings 

and (ii) magnetic bearings. Mechanical bearings have been successfully applied for low-speed FESS. 

These mechanical bearings can have their drawbacks by friction and require lubrication and 

maintenance [38]. More particularly, the variable reluctant machine (VRM), the induction machine (IM), 

and the permanent magnet machine (PMM) are utilized by FESS. Table 3, illustrates the summarized recent 

studies in FESS.  
 

 

https://www.sciencedirect.com/topics/engineering/hydrogen-compression
https://www.sciencedirect.com/topics/engineering/heat-exchanger
https://www.sciencedirect.com/topics/engineering/heat-exchanger
https://www.sciencedirect.com/topics/engineering/thermodynamic-model
https://www.sciencedirect.com/topics/engineering/exergy-efficiency
https://www.sciencedirect.com/topics/engineering/exergy-efficiency
https://www.sciencedirect.com/topics/engineering/suction-pressure
https://www.sciencedirect.com/topics/engineering/energy-storage-density
https://www.sciencedirect.com/topics/engineering/hydrogen-production
https://www.sciencedirect.com/topics/engineering/hydrogen-production
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Figure 4. Structure of a FESS [36].  

Table 2. The suitable FESS for smart PGs [19]. 

FESS Asynchronous VRM PMM 

power High Medium Medium 

Spinning losses Removable by 

annulling flux 

Removable by 

annulling flux 

Non-removable, static flux 

Efficiency High High Very high 

Control Vector control Synchronous: 

Vector Control. 

Switched: DSP 

Sinusoidal: Vector control. 

Trapezoidal: DSP 

Size 1.8 L/kW 2.6 L/kW 2.3 L/kW 

Tensile strength Medium Medium Low 

Torque ripple Medium High Medium (10%) Low 

Maximum/base speed Medium High Low 

Demagnetization No No Yes 

Cost Low Low) Low 

     Moreover, the design of the magnetic bearing allows FESS to work at peak efficiency and longer life-cycle, 

which has always been attracted by many academic types of research. Moreover, the composite materials can gain 
a competitive advantage over a high power density and its high-speed FESS up to 100,000  rpm by reducing the 

weight [39]. The power density of FESS can reach 5,000 kW/ 𝑚3 and 80% to 95% of Cycle efficiency. Using 

equation (1) is to calculate the amount of stored energy by the FESS as follows. 

𝐸𝐹𝑊
1

2
𝜔2 

     Equation (1) is a clear indication that EFW refers to stored energy by FESS. Both symbols of 𝐽 and 𝜔 are the 

state of inertia as well as the angular velocity of the rotor. The increasing speed or even the state inertia are directly 

affected by enhancing stored energy of FESS, respectively. It is worth mentioning that the state of inertia relies on 

the specific form and mass (m) of FESS. Equation (2) presents the state of inertia (J). 

J = 
1

2
 m 𝑟2 or J = 

1

2
𝜌 𝛼 𝜋 𝑟4 (2) 
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Where r refers to radius and 𝛼 is related to length. The 𝜌 indicates the mass density of FESS. Furthermore, 

the operation of FESS can be expressed as equation (3) by applying a mechanical equation. 


𝑑𝜔

𝑑𝑡
𝑇𝑒𝑚 −  𝑓𝜔 

     It is perfectly feasible to store more energy by taking into account the increase in disk radius or even by applying 

high-density material. Where 𝑇𝑒𝑚  is noted as an electromechanical torque and f refers to the friction coefficient 

term. 

Table 3. The summarized recent studies in FESS. 

Ref. Year Type of 

MESS 

Summarized 

[40] 2023 FESS  As different shapes of flywheels have different moments of inertia and energy 

storage efficiency, this study also examined the energy density of the FESS under 

different shapes and obtained the best-fit shape for the hydraulic power unit.  

 A test platform is set up to verify the effectiveness of the proposed hydraulic 

drive system. Results show that the installed power is reduced by approximately 

41.9 % and the energy consumption is reduced by 53 %, compared to the 

traditional hydraulic presses (HPs). 

[41] 2023 FESS  This paper proposes an impingement jet cooling structure with a rotating axis to 

facilitate the heat dissipation of FESS. The implications of the cooling medium, 

nozzle length, cavity zone diameter, and nozzle diameter of the impingement jet 

cooling structure on flow and heat transfer performance are studied by field 

synergy theory.  

 The Nusselt number, friction coefficient, field synergy angle, comprehensive 

coefficient of heat transfer, and temperature field are analyzed. 

 Heat transfer can be improved by decreasing the diameter of the cavity zone, 

lengthening the nozzle, and increasing the nozzle diameter. The pressure drop 

of the optimized structure is at least 62.48% less than that of the unmodified 

structure, while the temperature increase of the cooling medium is nearly 3.5 

times higher. 

[42] 2023 FESS  The article demonstrated that a 40 % reduction in the operating pressure can 

reduce the flywheel surface temperature and wind loss by 20 % and 30 %, 

respectively. 

 A partial vacuum environment can achieve better energy conversion 

efficiencies provided an appropriate bearing seal is achieved to maintain the 

pressure inside the housing.  

 The investigated flywheel energy storage system can reduce the fuel 

consumption of an average light-duty vehicle in the UK by 22 % and decrease 

CO2 emission by 390 kg annually. 

[43] 2023 FESS  A FESS integration and sensitivity analysis performed on a 1MW wind power 

site with varying degrees of export limitation in place show that the site could 

generate an additional 6.1–38.5MWh over a year.  

 Subsequent novel economic analysis of the installations showed that the system 

is economically viable across a wide range of scenarios, increasing the Net 

Present Value of the site by up to 1.25%.  

 Finally, the performance of the FESS is compared to a Lithium-ion battery energy 

storage system, highlighting the novel contribution of using a flywheel for this 

application by showing the excessive cycling a BESS would experience and the 

knock-on effect this has on economic viability.  

[44] 2023 FESS  Experimental results show that the FESS can be applied to smooth high-

frequency wind power output from wind power generation with relatively good 

results.  

 The FESS using the model predictive control  (MPC) system is more effective in 

smoothing wind power fluctuations at short time scales due to the fast response 

https://www.sciencedirect.com/topics/engineering/moment-of-inertia
https://www.sciencedirect.com/topics/engineering/flux-density
https://www.sciencedirect.com/topics/engineering/hydraulic-drives
https://www.sciencedirect.com/topics/engineering/hydraulic-drives
https://www.sciencedirect.com/topics/engineering/hydraulic-machinery
https://www.sciencedirect.com/topics/engineering/energy-conversion-efficiency
https://www.sciencedirect.com/topics/engineering/energy-conversion-efficiency
https://www.sciencedirect.com/topics/engineering/flywheel-energy-storage-system
https://www.sciencedirect.com/topics/engineering/battery-energy-storage
https://www.sciencedirect.com/topics/engineering/battery-energy-storage
https://www.sciencedirect.com/topics/engineering/predictive-control-model
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characteristics of the FESS and the precise control characteristics of the MPC 

control system.  

[45] 2023 FESS   FESS is applied to compensate for the transient power changes, mitigate load 

fluctuations, and maintain the voltage of the shipboard direct current (DC) bus.  

  The coordinated control strategy of the micro gas turbine, FESS, and load system 

is designed. The mitigation effects of FESS on marine gas turbine DC Microgrid 

under high-power load mutation are explored by performing simulation with 

sudden load changes of 25%, 50%, and 75% rated power and comparing the 

performance with and without FESS.  

 
Recently investigators [46] have studied the effects of FESS concerning its main components and 

applications. The main applications of FESS in power quality improvement, uninterruptible power 
supply, transportation, renewable energy systems, and energy storage are explained, and some 

commercially available flywheel storage prototypes, along with their operation under each application, 
are also discussed. Moreover, FESS offers the unique characteristics of a very high cycle and calendar 
life the best technology for applications that demand these requirements. A high power capability, 

instant response, and ease of recycling are additional key advantages.  
In recent years, different approaches [47] have tried to account for the FESS that can be applied from 

very small micro-satellites to huge PGs. There are three main devices in FESS, including machine, 
bearing, and power electronic interface (PEI). Furthermore, the advantages and disadvantages of all of 
them have been presented. In addition, a brief review of new and conventional power electronic 

converters used in FESS has been discussed. The article [48] was carried out on studies that FESS is an 
energy conversion device designed for energy transmission between mechanical energy and electrical 

energy. Moreover, there are high requirements on the power capacity, the charging efficiency, and the 
output precision of FESS. Active magnetic bearings are used to suspend the flywheel (FW) rotor of the 
FESS in air to eliminate friction. A high rotating speed of the flywheel can increase the power capacity 

but it also increases the disturbance load torque on the FW rotor.  
The article [49] investigated the design, optimization, and analysis of FESS used as a dynamic voltage 

restorer. The first purpose of the article was to design a flywheel with a natural resonance 
frequency outside the operating frequency range of the FESS. The matrix converter needs a special 
motor/generator design, because of the voltage utilization ratio of the matrix converter. Therefore, a 

permanent magnet synchronous motor (PMSM) being compatible with the matrix converter voltage 
level was designed and optimized. The motor was optimized to achieve low torque ripple and as high 

torque as possible by using a multi-objective optimization algorithm. Input/output voltages of the FESS 
are analyzed for PG interruption and 50% voltage sag operation conditions. The frequency analysis 
study was performed by using SolidWorks, the PMSM was designed and optimized by using 

MAGNET-Infolytica, and all the other results were performed by using MATLAB-Simscape. 

C. Pumped hydro energy storage system (PHESS) 

PHESS represents a sophisticated infrastructure designed to harness electrical energy by capitalizing 
on the potential energy stored in water. This process entails employing an electric pump to transport 

water from a lower reservoir to an upper water body via a conduit. Subsequently, gravity allows this 
stored water to flow through a hydro turbine, descending from a higher elevation to a lower one.  It is 

imperative to acknowledge that for the successful implementation of pumped hydro energy storage 
systems, certain prerequisites must be met [50,51]. Moreover, the extent to which such energy storage 
sources can contribute to the energy landscape of developing nations hinges significantly on the 

availability of suitable sites and access to water resources. When these prerequisites are met, PHESS 
emerges as an exceptionally well-suited choice for renewable energy storage and integration into the 

PG [52-53]. In stark contrast to alternative energy storage methods, PHESS systems exhibit noteworthy 
efficiencies, typically falling within the range of 70% to 80%, with a customary capacity spanning from 
1000.0 MW to 1500 MW [54,55]. 

It's worth noting that Europe boasts a cumulative PHESS capacity of approximately 55.0 GW, 
whereas the global capacity stands at a substantial 170.0 GW. PHESS systems demonstrate remarkable 

robustness and seamless integration into electrical grids, making them a pivotal consideration when 
evaluating the impact of energy storage technology on grid infrastructure. Table 4, summarizes recent 

https://www.sciencedirect.com/topics/engineering/mitigation-effect
https://www.sciencedirect.com/topics/engineering/power-electronic-interface
https://www.sciencedirect.com/topics/engineering/power-electronic-converter
https://www.sciencedirect.com/topics/engineering/power-electronic-converter
https://www.sciencedirect.com/topics/engineering/dynamic-voltage-restorer
https://www.sciencedirect.com/topics/engineering/dynamic-voltage-restorer
https://www.sciencedirect.com/topics/engineering/resonance-frequency
https://www.sciencedirect.com/topics/engineering/resonance-frequency
https://www.sciencedirect.com/topics/engineering/synchronous-motor
https://www.sciencedirect.com/topics/engineering/voltage-sag
https://www.sciencedirect.com/topics/engineering/solidworks
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studies in PHESS. The installed capacity P (kW) of a pumped-storage plant is measured from the next 

equation (4).  
𝑃 = 𝜌 × 𝑔 × 𝑄 × (𝐻 − 𝛥𝐻) × 𝜂 (4) 

Where P is known as the density (kg/m3) of water, g is referred to as acceleration due to the gravity 
(mm2). Moreover, Q presents the discharge (m^3/s), and H shows the head (m). Then, ΔH is well-known 
as the loss of hydraulic head. The term η is called the efficiency of the generator. 

Table 4. The summarized recent studies in PHESS. 

Ref. Year Type of 

MESS 

Summarized 

[56]  2023 PHESS  This article investigates the inner flow characteristics in the guide-vane region of 

a prototype system with the horizontal shaft in the optimal pump mode.  

 A new phenomenon, partial flow separation, is discovered. The most intuitive 

feature of partial flow separation is that large-scale separation vortices in the 

guide-vane region are concentrated in the top passages of the antigravity part, 

while the bottom passages demonstrate good through-flow capacity.  

[57]  2023 PHESS  Geographic information system and analytic hierarchy process (GIS-AHP) 

pumped hydro energy storage System (PHESS) site selection method developed. 

Moreover, the method identified 14 potentially feasible sites in North 

Queensland, Australia. 

 LCOE ranged between 0.04 AU$/kWh and 0.27 AU$/kWh for the base case 

scenario. 

[58]  2023 PHESS 

 

 

 

 

 

 

 The trend of PHES potential capacity showed a similar pattern, which had slopes 

of 5548.5 ± 69.2 GWhyr−1 and −238.1 ± 90.4 GWhyr−1, with 1995 serving as the 

turning point.  

 An ever-accelerating rising trend of future PHES potential is predicted. 

Compared with the reference period, the mean PHES potential density will 

increase by 21.7 %, 23.2 %, 23.8 %, and 25.4 % in the near, short, medium, and 

long terms.  

[59]  2023 PHESS   The article aimed at the fundamental principles, design considerations, and 

various configurations of PHESS, including open-loop, closed-loop, and hybrid 

designs. 

  The article highlighted the crucial role of PHESS in integrating renewable energy 

sources, mitigating peak load demands, and enhancing power grid stability. 

[60]  2022 PHESS  This study investigated the frequency and power balance of an isolated 

Microgrid system, by including storage systems (battery and pump-hydro).  

 Realistic data for wind and solar sources are used for the optimal tuning of the 

proportional-integral controller, using the integral of the absolute error criterion 

multiplied by time, with a Quasi-Newton method.  

 Simulation studies have been carried out, to investigate the performance of the 

Microgrid system, by including the hydroelectric power plant system with pump 

storage for 24 h, under various operating conditions.  

[61]  2023 PHESS  This paper introduced a two-step site selection concept, including a screening 

assessment followed by a comprehensive assessment, to determine suitable 

locations for underground PHESS. 

 The screening indicated in the screening assessment comprises geological 

features, mine water disasters, and minimum installed capacity, while the 

analytic hierarchy process is applied in the comprehensive assessment.  

 Coal mines in Henan Province are preliminarily screened through the screening 

assessment and the potential for underground PHESS is thoroughly 

investigated. 

 By consuming surplus wind and solar power, underground  PHESS can reduce 

4.68 × 105 tonnes of carbon dioxide (CO2) emissions. 
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A fundamental aspect of PHES is a matured technology for large-scale storage applications, that can 

absorb surplus electrical power from the network system, thus making it a relatively flexible cost-
effective solution in comparison to other technologies such as batteries and power-to-X or 

interconnections [62]. Moreover, another study [63] evaluated the potential benefit of retrofitting 
existing conventional cascade hydropower stations (CCHSs) with reversible turbines to operate them 
as PHESS. The study also examined the energy generation and storage problem for a CCHS with two 

connected reservoirs that can be transformed into the PHES system in a market setting where the 
electricity price can be negative. The article also formulated this problem as a stochastic 

dynamic program (SDP) under uncertainty in the streamflow rate and electricity price.  
PHSS [64] is a dominant feature of the different possible scenarios for the replacement of light fuel 

oil (LFO) thermal power plants connected to the power grid in northern Cameroon by renewable energy 

plants. Several scenarios such as the combination of solar photovoltaic (PV) with a pumped hydro 
storage system (PHSS), Wind and PHSS, and PV-Wind-PHSS have been studied. The selected scenarios 

are evaluated based on two factors such as the system’s total cost (TC) and the loss of load probability 
(LOLP). The metaheuristics such as the non-dominated sorting whale optimization algorithm 
(NSWOA) and non-dominated sorting genetic algorithm-II (NSGA-II) have been applied under 

MATLAB software. However, the total cost in the PV-PHSS, Wind-PHSS, and PV-Wind-PHSS scenarios 
with NSWOA is, respectively, 1%, 6%, and 0.2% lower than with NSGA-II. According to NSWOA 

results, the total cost for the PV-Wind-PHSS scenario at LOLP 0% is 4.6% and 17% less than the Wind-
PHS and PV-PHSS scenarios, respectively. 

The subject of PHES [65] has received considerable critical attention using a daily mean reverting 

jump diffusion stochastic model of electricity prices in a risk-neutral world. The study showed that the 
income with this strategy under uncertainty may be insufficient compared to investment costs. 

Moreover, the strategy does not usually provide proper guarantees as regards SoS at times of high 
electricity demand. Besides that, the technical characteristics of PHESS such as the maximum upper, 
and lower reservoir volume are highly significant. PHESS profitability can be improved under a 

generating company (GENCO) strategy coordinated with a wind farm and if the avoided 
CO2 emissions are taken into account. The article [66] has long been a question of outstanding concern 

in hydropower generation. The article also an emphasis on installations in the Middle East and North 
Africa (MENA) in terms of available capacity as well as past and future developments and expansions. 
A discussion is presented on a project taking place in the United Arab Emirates (UAE) in the Hatta 

region, which has a water reservoir that would be fit for utilization for pumped hydro storage 
applications. Once the project is commissioned in 2024, it provided an estimated 2.06 TWh per year, 

helping the UAE achieve the goal of relying on 25% renewable energy resources in their energy mix by 
2030. These results were obtained by using EnergyPLAN software to project the effect of utilizing 

various energy resources to face the expected demand of ~38 TWh in 2030. 

3. Artificial Intelligence Techniques for Smart PGs 

Due to the swift evolution of the smart PGs, an increasing distribution of components within the 
power grid (PG) within mechanical energy storage system (MESS), including elements like smart PGs 

metering infrastructure, communication networks, distributed energy resources, and electric vehicles, 
have become closely interwoven into the power grid's [67,68]. This integration forms an extensive PG 
that relies heavily on an intricate communication infrastructure. In addition to that, these components 

collectively generate substantial volumes of data, which serve as the backbone for automating and 
elevating the smart PG's operational efficiency [69-73]. 

 This data is instrumental in supporting a wide array of critical applications, such as distributed 
energy management, predictive system state forecasting, fault detection, and cybersecurity measures. 
These AI methodologies have emerged as a compelling solution to tackle the complexities inherent in 

smart PGs [74-80]. By harnessing large-scale data, AI approaches offer the potential to substantially 
enhance the performance and functionality of smart PGs, addressing multifaceted challenges in this 

rapidly evolving landscape.  
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AI techniques within the context of the smart PQ integrated with MESS can be broadly categorized 

into several key areas: 
 Expert Systems (ES): These involve employing human expertise within a computational 

framework to tackle specific problems. 
 Supervised Learning: This AI paradigm revolves around the study of input-output mappings 

to make predictions for new inputs. It's a well-established method for training AI models. 

 Unsupervised Learning: Falling under the machine learning umbrella, unsupervised learning 
utilizes unlabelled data to uncover patterns, similarities, and differences within the dataset. 

 Reinforcement Learning (RL): In contrast to supervised and unsupervised learning, RL 
introduces intelligent agents that make decisions to maximize cumulative rewards. It focuses 
on learning through interactions and decision-making. 

 Ensemble Methods: These methods amalgamate outcomes generated by multiple AI algorithms 
to mitigate the limitations of individual algorithms, ultimately yielding enhanced overall 

performance. 

A.  Expert System 

The expert system (ES), as illustrated in Figure 5, represents the earliest generation of intelligent 

systems. It was developed to replace human experts within specific domains, offering solutions to 
particular problems using Boolean logic. Even today, many challenges within the smart PG integrated 

with the MESS domain, including fault diagnosis, intelligent control, and energy router decision-
making, continue to rely on ES techniques [81-84]. The ES operates by incorporating domain knowledge 
gathered from experts in the field. This knowledge, combined with relevant databases, constitutes the 

knowledge base, which serves as the central component of the ES.  

 
Figure 5. The diagram of an expert system. 

Within the knowledge base, rules are formulated in the form of if-then statements, linked by logical 

operations [85-87]. This knowledge can be sourced directly from domain experts or extracted from 
research findings. The ES deduces solutions to problems by evaluating if-then rules against user-
provided input data, which interfaces with the knowledge base via an intermediary rule engine. 

B. Supervised learning 

Supervised learning, a machine learning task, involves creating generalized hypotheses based on 

input and output data. This is achieved by training the system with labeled input-output pairs from 
external sources. Following training, the resulting mapping function can be employed to predict future 
data. Over the past two decades, a diverse array of supervised learning algorithms has been developed 

and widely adopted to enhance smart PG. Figure 6, provides a compilation of common supervised 
learning algorithms in the context of smart PG. Artificial neural networks (ANNs), designed to mimic 

biological nervous systems, have exerted a significant influence across various domains in recent years. 
ANNs, like many other machine learning techniques, do not require explicit programming but rely on 
algorithms to make predictions based on data [88,89]. 

 Extreme Learning Machines (ELMs), employing a single hidden layer feedforward neural network, 
are a subtype of ANN algorithms. They have found applications in resolving smart power grid issues 
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such as power system stability assessment and fault detection [90,91]. In this direction, the Back- 

Propagation Neural Network (BPNN) is a pivotal neural network learning technique that involves 
iteratively adjusting network weights until the error between the output and ground truth reaches a 

specified threshold. BPNN has gained extensive use in various neural network algorithms [92,93]. The 
Multilayer Perceptron, another feedforward neural network algorithm, is commonly employed. 
Moreover, the Probabilistic Neural Network (PNN) is a well-developed feedforward neural network 

model, that utilizes parent probability distribution functions of each class to estimate class probabilities 
for input data [94,95]. The k-Nearest Neighbors (KNN) algorithm, known for its rapid training 

capabilities, is also utilized in smart PG systems for both classification and regression tasks [96,97].  
 

 

Figure 6. Supervised learning techniques in the smart PG. 

C. Unsupervised learning 

Supervised learning algorithms have demonstrated significant performance gains over decades of 

development. However, their effectiveness hinges on the availability of ground truth or prior 
knowledge of the patterns to seek, a circumstance not always guaranteed in real-world scenarios. This 

underscores the utility of unsupervised learning, which can uncover potential insights and hidden 
patterns within unlabelled data. Figure 7, presents a compilation of prevalent unsupervised learning 
algorithms. Unsupervised neural networks, such as the restricted Boltzmann machine, auto-encoder, 
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and variational auto-encoder, find applications in tasks like anomaly detection, stability assessment, 

and load forecasting [98,99]. Clustering, an unsupervised task that involves grouping data points or 
populations based on similarity, employs methods like K-means, fuzzy c-means, and hierarchical 

clustering. 

 
Figure 7. Unsupervised learning techniques diagram. 

D. Reinforcement Learning 

Reinforcement Learning (RL) has gained increasing popularity as an algorithmic approach for 
addressing challenges in smart PG integrated with the MESS applications. RL comprises fundamental 

components including an agent, environment, reward system, and actions. Its primary objective is to 
maximize cumulative rewards through a continuous process of receiving feedback, encompassing both 
rewards and penalties, for each action taken [100,101]. Figure 8, provides an overview of commonly 

employed RL algorithms. RL excels in scenarios where knowledge of the environment is limited, and 
feedback on decision quality is constrained, allowing it to adapt to unforeseen circumstances. Q-

learning and SARSA (state–action–reward–state–action) find utility in tasks such as attack detection and 
energy management. Deep Reinforcement Learning (DRL), an algorithm that merges the perceptual 
capabilities of Deep Learning (DL) with the decision-making process of RL, has demonstrated 

remarkable success [102-104]. 

E. Ensemble methods 

Ensemble methods, in the context of smart PG integrated with the MESS applications, amalgamate 
outcomes from multiple learning algorithms or diverse initial datasets to enhance overall performance. 
One such method, known as Bootstrap Aggregating or "bagging," assigns equal weight to each model 

in the ensemble and trains them using randomly selected subsets of data. A notable bagging model is 
the Random Forest, which effectively combines random decision trees with a high-performance 
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classification algorithm. It finds application in tasks like load forecasting, anomaly detection [61,62], and 

stability assessment [105-108]. Another ensemble technique is "Boosting," which entails constructing a 
new model aimed at rectifying misclassifications made by the previous model. Boosting demonstrates 

promising outcomes in addressing smart PG challenges. Additionally, "Stacking" an ensemble learning 
approach that integrates predictions from various classification or regression algorithms, has seen 
substantial development for tasks like load forecasting, anomaly detection, and cyberattack detection 

within the smart PG domain. 

4. Technical Challenges of Artificial Intelligence in Smart PGs  

Traditional power systems, characterized by their intricate nature, rely primarily on physical 

modeling and numerical computations for analysis and control. The emergence of smart PGs integrated 
with the MESS, marked by a substantial integration of environmentally sustainable renewable energy 
sources and Microgrids, has initiated a shift from conventional PGs to more intricate smart PGs 

integrated with the MESS. This transition has brought to the forefront a multitude of uncertainties and 
complexities within the environment. Compounding these challenges is the utilization of aging 

infrastructure within the existing power system, further intensifying uncertainties in modern smart PG 
systems.  

 

Figure 8. An overview of commonly employed RL algorithms. 

As smart PGs integrated with the MESS closely intertwine with communication networks, they 
encounter the formidable task of managing vast quantities of data characterized by high variability. 

This continues to be a noteworthy challenge in the realm of smart PG integrated with the MESS. 
Furthermore, researchers are actively engaged in enhancing the robustness, adaptability, and real-time 
processing capabilities of AI algorithms. Despite the introduction of numerous data-driven 

methodologies aimed at addressing smart PG integrated with the MESS issues, several substantial 
challenges persist. These encompass but are not limited to the following: 

 Integration of Renewable Energy: Smart PGs are distinguished by their extensive 

incorporation of renewable energy sources. However, this feature introduces a set of notable 
challenges due to the inherent variability and unpredictability associated with renewable 

energy. This unpredictability results in frequent and abrupt fluctuations in power output. 
 Ensuring Data Security and Privacy: With the widespread deployment of diverse devices and 

bidirectional communication within smart PG integrated with the MESS, they become more 
susceptible to cyberattacks when compared to traditional power systems. As highlighted in the 
preceding section, numerous innovative security techniques have been developed to swiftly 

identify cyber risks, and mitigate issues such as false data injection, data theft, and electricity 
theft. Nevertheless, the network protocols, operating systems, and physical equipment 

employed in the current smart PG integrated with the MESS continue to expose the system to 
a wide array of potential attacks. Furthermore, the existing AI-based solutions for enhancing 
smart PG cybersecurity often involve trade-offs between security and performance. 

 Efficient Storage and Rapid Analysis of Big Data: Another substantial challenge pertains to 

enhancing the efficiency of storing and retrieving the vast volumes of data generated by smart 

PG integrated with the MESS for AI applications. This challenge necessitates robust solutions 
for managing big data to ensure its seamless utilization in various applications. 

Reinforcement Learning 

DDPG SARSA DQN Q-Learning
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 Interpreting AI Algorithms: In general, AI algorithms often suffer from the challenge of being 

perceived as black boxes, making them less interpretable and explainable. This issue represents 
a significant hurdle that AI algorithms currently encounter. 

 Constraints of AI Algorithms: The integration of AI technologies significantly impacts the 

implementation of AI within smart PG integrated with the MESS. Nevertheless, it is imperative 
to carefully assess the limitations inherent in each AI method before its application within the 

smart PG context. 

5. Directions and Prospects of Artificial Intelligence in Smart PGs 

The primary aim of smart PG integrated with the MESS is to realize a fully autonomous system 

characterized by responsiveness, adaptability, self-repair capabilities, complete automation, and cost-
efficiency. The forthcoming directions and prospects for advancing smart PG systems are explored as 
follows: 

 Integration with Cloud Computing: To achieve a fully self-learning smart PG system, the 

integration of AI with cloud computing will assume an increasingly pivotal role. This 

integration not only enhances security and robustness but also minimizes disruptions in smart 
PG systems. 

 Prediction of Consumer Behavior: With the aid of fog computing and the advancement of 5G 

networks, the management of demand on the consumer side has emerged as a crucial task. 
Understanding patterns in consumer behavior and power consumption holds significant 

potential for enhancing demand response initiatives from the consumer's perspective. 
 Fog Computing: Fog computing is centered on the local pre-processing of raw data, eliminating 

the need to transmit this data to a distant cloud. Offering on-demand computing resources, fog 

computing boasts several advantages, including energy efficiency, scalability, and flexibility. 
Some research endeavors have ventured into integrating fog computing into the smart PG, and 

its importance is set to grow in tandem with the escalating data volume within future smart PG 
infrastructures. 

 Transfer Learning: The persistent challenge of limited labeled data remains a central hurdle in 

smart PG analysis. Transfer learning, however, offers a potential solution by alleviating the data 
requirements, prompting researchers to employ it in addressing the issue of data scarcity. In 

recent times, there has been a growing focus on deep transfer learning applications [163], which 
hold substantial promise for a wide array of applications within smart PG. 

6. Conclusion 

In the ongoing transformation from conventional electric grid systems to advanced smart PG 

systems, the limitations of traditional power system methods in processing and managing the 
substantial data volumes inherent to smart grids have become evident. Consequently, there is a growing 

development and implementation of AI techniques across various applications within the smart power 
grid integrated with MESS, yielding promising outcomes. This article conducts a comprehensive 
survey, exploring recent applications of AI techniques in four critical domains: load forecasting, power 

grid stability assessment, fault detection, and security issues, which have not received comprehensive 
coverage in previous studies. Moreover, it addresses the present challenges, opportunities, and the 

future potential of AI techniques in realizing the full capabilities of a genuinely smart PG. Furthermore, 
the synergy between MESS and artificial intelligence (AI) techniques augments the potential of smart 
PGs to address contemporary challenges. This article illuminates the burgeoning role of AI, PG stability 

assessment, fault detection, and security enhancement within smart PGs and power systems. While 
acknowledging the complexities and forthcoming research challenges, it underscores that AI holds the 

key to fortifying the reliability and resilience of smart PG systems. In essence, the future of energy lies 
in the fusion of innovative technologies like MESS and AI, driving the transition towards sustainable, 
intelligent, and efficient smart PGs that are capable of meeting the evolving demands of our rapidly 

changing world. 
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