
 

IJEES 

 
International Journal of Electrical Engineering 

 and Sustainability (IJEES) 
 

ISSN (online): 2959-9229 

https://ijees.org/index.php/ijees/index 
 Volume 2 | Number 1 | January-March 2024 | Pages 51-60  

 

page | 51  
 

 Editorial Article  

Sustainable Development and the Surge in Electricity 

Demand Across Emerging Economies 

Yasser Nassar 1*, Mohamed Khaleel 2 

1 Mechanical Engineering Dept., Faculty of Engineering, Islamic University of Gaza, Gaza, Palestine 
2 Department of Electrical-Electronics Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey 

 

*Corresponding author: yasser_nassar68@ymail.com 
 

Received: January 02, 2023 Accepted: February 15, 2024 Published: February 22, 2024 
This is an open access article under the BY-CC license 

Keywords: Sustainable development; Carbon dioxide; Electricity Demand; Economies; Renewable capacity. 

 Sustainable Development and the Surge in Electricity Demand Across Emerging Economies 

Electricity plays a pivotal role in the operation and development of contemporary societies and 

economies, with its significance escalating as electricity-dependent technologies like electric vehicles 

and heat pumps gain prominence [1-5]. Currently, power generation stands as the foremost contributor 

to global carbon dioxide (CO2) emissions. However, it concurrently spearheads the transition towards 

achieving net zero emissions by swiftly expanding renewable energy sources like solar and wind power. 

Balancing the imperatives of ensuring secure and cost-effective electricity access for consumers while 

simultaneously mitigating global CO2 emissions represent a fundamental challenge in navigating the 

energy transition [6-12]. Figure 1 illustrates the emissions from different sources in the energy sector for 

the years 2021 and 2022. 

 

Figure 1. The emissions from different sources in the energy sector for the years 2021 and 2022. 
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In 2022, the aggregate greenhouse gas emissions stemming from energy-related activities exhibited 

a marginal 1% augmentation, culminating in a historic high of 41.5 gigatonnes of carbon dioxide (CO2) 

equivalent. Nonetheless, this expansion was notably more subdued in comparison to the preceding 

year's resurgence, which surpassed 6%. Predominantly, emissions emanating from energy combustion 

and industrial procedures collectively accounted for 89% of the total energy-related emissions, 

predominantly comprised of CO2. Specifically, emissions originating from energy combustion escalated 

by 423 million tonnes, whereas emissions attributable to industrial processes experienced a decrement 

of 102 million tonnes [13-16]. This decline primarily ensued from reduced industrial output, particularly 

evident in China, marked by a 10% reduction in cement production and a 2% decline in steel 

manufacturing. 

The global expansion of electricity demand experienced a relatively modest increase of 2.2% in the 

fiscal year 2023, a slight deceleration from the 2.4% growth observed in the preceding fiscal period of 

2022 [17-20]. Notwithstanding this moderation, anticipations indicate a prospective upturn in growth 

rates to a higher magnitude of 3.4% throughout the forecast period spanning 2024 to 2026. In addition, 

this trajectory of expansion is anticipated to be chiefly propelled by emerging markets, which persist in 

assuming a dominant role in the escalation of electricity demand, akin to their position in the year 2023. 

The pervasive ramifications of the energy crisis endured unabated throughout the fiscal year 2023, 

as manifested in the persistent inflationary pressures, elevated interest rates, and substantial debt 

encumbrances, collectively exerting downward pressure on economies across the global spectrum. 

Nevertheless, emerging market economies exhibited notable resilience, characterized by robust 

increases in electricity demand [21-26]. In stark contrast, the majority of advanced economies recorded 

contractions, attributable to the lackluster macroeconomic milieu and feeble performance of industrial 

and manufacturing sectors, notwithstanding the ongoing process of electrification. Moreover, mitigated 

climatic conditions relative to the antecedent fiscal period contributed to a reduction in electricity 

consumption across certain regions, notably the United States. Figure 2 shows the annual variation in 

electricity consumption by region from 2022 to 2026. It is noteworthy to highlight that a significant 

emerging contributor to heightened electricity utilization emanates from energy-intensive data centers, 

artificial intelligence (AI) technologies [27-37], and cryptocurrency operations, a trend anticipated to 

potentially undergo a twofold increase by the year 2026. 

 
Figure 2. The annual variation in electricity consumption by region from 2022 to 2026. 

Approximately 85% of the forthcoming increment in electricity demand until the conclusion of 2026 

is anticipated to originate from regions beyond the purview of advanced economies, prominently 

including China, India, and Southeast Asia [38-42]. The October 2023 forecast by the International 

Monetary Fund (IMF) delineates a gradual convalescence of economic conditions within advanced 

economies, with GDP growth rates projected at 1.5% for the fiscal year 2023, followed by a slight 

diminution to 1.4% in 2024, culminating in an annual average of 1.8% over the interval spanning 2025 
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to 2026. In contrast, for emerging economies, the IMF prognosticates a continuation of robust expansion, 

envisaging an average annual growth rate of 4%, or marginally higher at 4.1%, throughout the period 

extending from 2024 to 2026, aligning with the estimated 4% growth observed in 2023 [43]. 

During the latter half of 2021 through 2022, electricity and natural gas prices within the European 

Union attained unprecedented peaks. Notably, the mean household electricity tariffs surged from EUR 

23.5 to EUR 28.4 (USD 25.1 to USD 30.3) per 100 kilowatt-hours (kWh), while average fossil gas rates 

escalated from EUR 7.8 to EUR 11.4 (USD 8.3 to USD 12.2) per 100 kWh. Various factors contributed to 

this surge in prices, including the global economic rebound following the COVID-19 pandemic, which 

precipitated heightened energy consumption. Additionally, geopolitical tensions between the Russian 

Federation and Ukraine exacerbated concerns over gas supplies. Moreover, the diminished output of 

renewable energy sources, attributable to adverse weather conditions, further exacerbated the situation. 

Within the European Union, subsequent to a contraction of 3.1% in the year 2022, there ensued an 

additional decline of 3.2% in electricity demand throughout 2023. Anticipations suggest a resurgence in 

demand during 2024, projected at 1.8%, predicated upon the presumption of a partial recuperation 

within the industrial sector, facilitated by the amelioration of energy costs and the burgeoning 

integration of electrification within the transportation and heating domains [44-50]. 

In 2023, the escalation in electricity demand within India amounted to a 7% increase in contrast to 

the previous year's figure of 8.6%. The enduring drivers behind this growth trajectory predominantly 

encompassed sustained rapid economic advancement alongside a resilient demand for space cooling 

services. Following two successive years marked by substantial advancements, India's electricity 

consumption exceeded the combined consumption levels of Japan and Korea by the conclusion of 2023 

as depicted in the references [51-57]. 

In the year 2023, the dynamics of electricity demand demonstrated disparate trajectories, 

characterized by pronounced contractions within advanced economies juxtaposed with robust 

expansion in emerging market nations, notably exemplified by China and India. This surge in demand 

for electricity in emerging markets was primarily fueled by heightened economic activity. China, in 

particular, exhibited a noteworthy escalation in electricity demand, registering a growth rate of 6.4% 

during the aforementioned fiscal period, a notable contrast to the 3.7% year-on-year increase 

documented in 2022 consistent with the sources provided in references [58-64]. Notwithstanding this 

decelerated rate of expansion, China's projected augmentation in electricity demand, estimated at 

approximately 1,400 terawatt-hours (TWh) until 2026, persists as an entity encompassing over 50% of 

the extant aggregate annual electricity consumption within the European Union. Moreover, by the 

conclusion of 2022, the per capita electricity consumption in China had already surpassed that of the 

European Union. 

In the fiscal year 2023, Japan experienced a decline of 3.7% in electricity demand, a notable deviation 

from the 1% increment observed in 2022. Despite elevated temperatures during the summer months, 

which typically stimulate demand for cooling services, the confluence of factors including a deceleration 

in the manufacturing sector and persistent efforts toward energy conservation exerted substantial 

downward pressure on electricity consumption levels [65-70]. However, the per capita electricity 

consumption across the African continent in 2023 is approximated to be 530 kilowatt-hours (kWh), with 

sub-Saharan Africa, excluding South Africa, exhibiting a mean consumption level of approximately 190 

kWh [71-73]. 

In 2022, the expansion of primary energy demand exhibited a decelerated pace, registering a mere 

1.1% increment in contrast to the 5.5% upsurge observed in 2021. Renewables, excluding hydropower, 

constituted 7.5% of the total primary energy supply, marking an increase of nearly 1% from the 

preceding year, while fossil fuels maintained a predominant share of 82%. Heightened concerns 

regarding potential disruptions in supply chains, coupled with notable fluctuations in fossil fuel prices, 

prompted a growing number of energy consumers on a global scale to embrace on-site renewable 

energy installations and transition towards electrified technologies across various end-use sectors [74-

77]. Figure 3 displays the total energy consumption by source for the years 2011, 2019, and 2021. 



 

Nassar et al. IJEES 
 

Page | 54  

 

 
Figure 3. The total energy consumption by source for the years 2011, 2019, and 2021. 

The recent report from the International Energy Agency (IEA) has revealed that grid-related 

technical or equipment failures alone incur economic damages of at least USD 100 billion annually on a 

global scale [78]. This underscores the imperative to enhance the discernment of failure origins and the 

components implicated therein. The genesis and constituents contributing to power outages can vary 

across nations, contingent upon the idiosyncratic conditions and configurations of their power grids 

[79-86]. Instances of power outages may arise from imbalances between generation and demand, such 

as fuel scarcities, power plant disruptions, or inadequate system adequacy, or may stem from grid-

related challenges [87-94]. Grid-related causes of power interruptions can be classified into three 

primary categories: natural occurrences, human fallibility, and technical or equipment-related 

malfunctions. Human-associated factors including vehicular accidents involving utility poles and 

transformers, substandard craftsmanship, errors in new connections, acts of vandalism, and 

cyberattacks can precipitate disruptions in power provision [95-100]. In numerous regions, these factors 

constitute substantial contributors to power outages, warranting heightened scrutiny and remedial 

action. 

In summary, the year 2023 witnessed a substantial surge in the annual augmentation of renewable 

capacity on a global scale, experiencing an approximate increase of 50%, culminating in a level of 

approximately 510 gigawatts (GW). This escalation represents the most rapid growth rate observed in 

the past two decades. Clearly, this milestone signifies the 22nd consecutive year in which additions to 

renewable capacity have reached unprecedented heights. Remarkable advancements were particularly 

evident in Europe, the United States, and Brazil, where record-setting escalations in renewable capacity 

were recorded [101-105]. Of significant note is China's remarkable acceleration in this domain, 

underscored by the deployment of solar photovoltaic (PV) installations equivalent to the entire global 

capacity added in the previous year of 2022. Moreover, China's wind power additions witnessed a 

notable expansion of 66% compared to the preceding year. At a global level, solar PV installations alone 

accounted for three-quarters of the total renewable capacity added worldwide. 
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