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Abstract: Determining the path and location of a person or vehicle using satellite navigation systems can be 

challenging or even impossible, particularly in areas where the satellite signal is weak or non-existent, such as 

inside tunnels and enclosed spaces. Consequently, tracking becomes difficult. To address this issue, a method has 

been researched to reduce the error rate in such locations: the Kalman Filter method. After implementing this 

approach, when the signal received from the satellites is strong, the application readings closely align with the 

satellite readings, making it applicable in areas where the satellite signal is either weak or nonexistent. 
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1. Introduction 

In recent times and in the coming years, high precision in determining locations is crucial and 

sensitive, particularly in self-driving cars, drones, ships, and tracking children, as well as being 

significant in industry, health, and other sectors. From this, we recognize that tracking objects is vital in 

contemporary life and in the future to prevent accidents and enhance safety [1,2]. To achieve high 

accuracy in location determination, a combination of sensors with varying specifications is employed. 

Typically, artificial satellites and INS serve as the primary sources for location determination. While 

satellite systems offer high accuracy in open areas, the INS system can provide more comprehensive 

information, including location, direction, and speed [3,4]. To build an integrated navigation system by 

combining GNSS and INS data, the Kalman filter (KF) is typically employed. It has been demonstrated 

that the Kalman filter can provide accurate readings despite the noise from measurements [5,6]. bridges, 

in tunnels, or beneath dense trees and in valleys, the GNSS signal often becomes weak or non-existent. 

In such scenarios, the measurement noise is atypical and impacts the readings, making it challenging 

for autonomous satellite navigation systems to accurately determine location in complex environments 

[7,8]. 

The INS system functions as an auxiliary sensor for the GNSS system, particularly in enclosed spaces 

and tunnels, as it operates continuously without requiring external information. Over time, the accuracy 

of the GNSS system in determining location and tracking deteriorates due to the accumulation of errors, 

resulting in incorrect location information. Consequently, new methods must be implemented to 

address this issue. Location errors should be confined to a specific value and must ensure safety. 

Additionally, it is essential to consider interference from external sources and establish comprehensive 

safety systems to guarantee accurate and reliable readings that pose no risks [9,10]. 
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This paper examines the application of the Kalman filter method and its comparison with GNSS 

readings in open areas with strong satellite signals. Participants walked in an open area on the Benghazi 

city track for 10 minutes, utilizing the MATLAB program to capture coordinate readings every second. 

Approximately 600 readings were recorded during this time, after which the GNSS path was plotted 

from the data. Subsequently, the Kalman filter method was employed to trace the path. It was 

determined that this path closely resembled the GNSS path, indicating its reliability in areas with weak 

or no coverage. The subsequent sections of this manuscript are organized as follows: Section 2 delineates 

the underlying mathematical framework of the Kalman filter, while Section 3 furnishes a comprehensive 

exposition of the corresponding algorithmic procedures. Section 4 presents and analyzes the simulation 

outcomes derived from the MATLAB implementation. Finally, concluding remarks are offered in the 

closing section. 

2. Kalman filter 

The Kalman filter is an efficient algorithm for estimating the state of a system from noisy 

measurements [11,12]. The goal of the Kalman filter is to take a probabilistic estimate of this state and 

update it in real time using two steps: Prediction and correction. Kalman filter requires the following 

motion and measurement models: 

𝑋𝑡 = 𝐴𝑡𝑋𝑡−1 + 𝐵𝑡𝑢𝑡−1 + 𝑤𝑡−1               (1) 

Where: 𝑋𝑡 state of the system at time  

𝐴𝑡  state transition matrix 

𝐵𝑡  control matrix 

𝑤𝑡   process noise 

The estimate state at time step t is a linear combination of the estimate state at time t-1, control input at 

time t-1, and some zero noise. The input is an external signal that effect the evolution of the system state. 

Zt = CtXt + vt                             (2) 

Where: 

𝑍𝑡 is the measurement at time t 

𝐶𝑡 is the measurement matrix 

𝑣𝑡 is the measurement noise 

The measurement noise 𝑣𝑡~𝑁(0, 𝑅𝑡), and the process noise 𝑤𝑡~𝑁(0, 𝑄𝑡) are essential for determining 

the accuracy of our system and the uncertainty regarding the effects of control inputs. Once the 

researcher has established the aforementioned system, the subsequent methodology proceeds in two 

key phases. First, the motion model is employed to predict the state. Next, the measurement model is 

utilized to refine this forecast by incorporating measurement residuals (innovations) and applying the 

optimal gain. Ultimately, this iterative process continuously improves the estimated state through 

systematic integration of observed data. 

3. Kalman Filter Algorithm 

The equations of the Kalman filter are divided into two groups [13-15]. 

3.1 Prediction equation (prediction state) 

𝑋𝑡 = 𝐴𝑡𝑋𝑡−1 + 𝐵𝑡𝑢𝑡−1                       (3) 

Where:  

𝑋𝑡: predicted state estimate from time (t-1) to t 

𝑋𝑡−1: using state estimate from time (t-1) 

𝑃𝑡 𝑡−1⁄ = 𝐴𝑡𝑃𝑡−1 𝑡−1⁄ 𝐴𝑡
𝑇 + 𝑄𝑡                  (4) 

Where: 
𝑃𝑡 𝑡−1⁄  : predicted error covariance from (t-1) to t 

𝑃𝑡−1 𝑡−1⁄ : using error covariance at time (t-1) 

𝑄𝑡: process variance matrix 
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3.2 Correction equations 

  Kt = Pt t−1⁄ Ct
T(CtPt t−1⁄ Ct

T + Rt)
−1      (5) 

Where: 

 Kt: kalman gain 

Rt: measurement variance  

Xt t⁄  =  Xt t−1⁄ + Kt ( Zt − CtXt t−1⁄ )       (6) 

Where: 

Xt t⁄  : update state estimate 

Zt: measurement 

CtXt t−1⁄ : predicated measurement 

Zt − CtXt t−1⁄ : residual    

𝑃𝑡 𝑡⁄ =𝑃𝑡 𝑡−1⁄ − 𝐾𝑡𝐶𝑡𝑃𝑡 𝑡−1⁄                        (7) 

Where:  

𝑃𝑡 𝑡⁄ : updated error covariance 

4   Simulation Results 

Data acquisition was conducted by gathering sensor measurements and GNSS readings with the 

“MATLAB” mobile application during a 10-minute pedestrian traversal in an open area in Methmar, 

Tapalino, Benghazi. The inertial measurements from the IMU were subsequently employed to visualize 

the overall acceleration magnitude, as well as the individual accelerations along the three principal axes. 

These results are depicted in Figures 1 (a–d). 

 

  
Figure 1. (a) combined acceleration. Figure 1 (b). x-axis acceleration 

  
Figure 1 (c) y-axis acceleration Figure 1 (d). z-axis acceleration. 
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Subsequently, the magnetic field, orientation, and angular velocity were each plotted along their 

respective three axes. These results are presented in Figures 2, 3, and 4, respectively. 

 

  
Figure 2 (a). x-axis magnetic field. Figure 2 (b). y-axis magnetic field. 

  
Figure 2 (c). z-axis magnetic field. Figure 3 (a). x-axis orientation field. 

  

Figure 3 (b). y-axis orintation field. Figure 3 (c). z-axis orintation field.  
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Figure 4 (a). x-axis angular velocity. Figure 4 (b). y-axis angular velocity.  

 
Figure 4 (c). z-axis angular velocity. 

 

Collected location data compared to the Kalman filtered solution. Next, plot both the collected GNSS 

position (latitude, longitude) and the Kalman filter estimated position (latitude, longitude) on the web 

map, where the blue line represents the collected GNSS data and the red line indicates the estimated 

position from the Kalman filter, as illustrated in Figures 5 (a-b). 

 

  
Figure 5 (a). Estimated vehicle Trajectory. Figure 5 (b). Web map trajectory. 
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5.   Conclusion 

Accuracy in determining location and motorization is crucial for self-driving vehicles, particularly in 

areas lacking satellite coverage, such as tunnels, enclosed spaces, valleys, and cities with tall buildings. 

The Kalman filter was employed to address this issue, as it was tested in an area of Benghazi. Both 

satellite data and the Kalman filter were utilized to navigate, revealing that the two paths were 

remarkably similar. Consequently, Kalman filter technology can be trusted to ascertain the routes of 

self-driving cars, especially in urban environments where satellite signals are weak or absent. 
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